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Abstract

The Wigner Rotation describes the paradoxical phe-
nomenon in special relativity, where a composition of sev-
eral Lorentz boosts could give a pure rotation. This pa-
per gives a new, geometric derivation of Wigner rotation,
accompanied by many diagrams. This allows Wigner ro-
tation to be easily derived and understood, allowing it to
be taught in an introductory course on special relativity.

1 Introduction

1.1 The Wigner rotation

Imagine a space station at rest, with two reference frames
made of steel, sitting parallel to each other. A rocket
picks one up and flies once around the station. The frame
on the rocket is mounted on a 3-gimbal mount, the same
kind of stand used by gyroscopes, to keep it non-rotating
whenever the rocket is rotating. Thus, while the rocket
could rotate and boost, the frame itself only undergoes
boosts. When the rocket returns, the two frames are
compared, and astonishingly, the frame on the rocket has
rotated relative to the frame on the station.

This is Wigner rotation: a rotation made of a compo-
sition of boosts.

1.2 History

The Wigner rotation was derived by Émile Borel
in 1913 [Mal13], forgotten, rediscovered by Llewellyn
Thomas in 1926 to explain the fine structure of atoms
(thus also called the “Thomas precession”), and finally
rederived by Eugene Wigner in 1939, who got his name
attached to it. [Wal99]
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1.3 Conventions in the paper

c = 1, so the lightcones make an angle of 45◦ with the
t-axis in the spacetime diagrams.

The coordinates are written in the (t, x, y, z) order. t
axis is always pointing up.

We will assume special relativity and Lorentz trans-
forms are correct, and simply translate some of it into a
geometric language. We could justify them by assuming
some axioms of spacetime geometry, but we won’t.

The sign convention is (+,−,−,−), so that the
Minkowski metric on R1+3 is

ds2 = dt2 − dx2 − dy2 − dz2 (1)

and the dot product is

(t, x, y, z) · (t′, x′, y′, z′) = tt′ − xx′ − yy′ − zz′ (2)

We write the absolute norm of a 4-vector V =
(t, x, y, z) as ||V || =

√
|t2 − x2 − y2 − z2|. The absolute

norm is not the norm, but it’s convenient when we don’t
want to deal with sign problems.

A unit vector is a vector with absolute norm 1. Two
vectors U, V are orthogonal, that is, U ⊥ V , iff U ·V = 0.

A reference frame is defined by its basis vectors
et, ex, ey, ez. The basis is orthonormal, meaning they
are unit vectors that are pairwise orthogonal. Also, et
is timelike, and points to the future. ex, ey, ez are space-
like.

To “see” is to measure. We won’t deal with the visual
distortion effects of relativity.

We assume all inertial observers make their origins
coincide, since translations are pretty trivial, and we’d
rather not deal with them.

While the results in the paper apply to 1 + 3 dimen-
sional spacetime, for ease of plotting, we consider only
1 + 1 or 1 + 2 dimensions. One unfortunate side effect is
that, confusingly, “3-vector” has only 1 or 2 components,
and “4-vector” has only 2 or 3 components.
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2 Geometry of spacetime

For a more leisurely treatment, see [BJ04].

2.1 Symmetries

A geometric space is best understood by what symme-
tries it has, and the geometric concepts are the concepts
unchanged by any symmetry operation on the space.
This viewpoint is promoted since Klein’s Erlangen Pro-
gram in the 19th century.

Applied to spacetime, whose symmetries are transla-
tions, rotations, and boosts, it means that any geometric
concept on spacetime must be unchanged by translations,
rotations, and boosts. We call this “Lorentz-invariance”.

Spacetime also have space-reflection and time-
reflection symmetries, and all results in the paper still
apply even when we allow these reflection symmetries,
but for simplicity we will not consider them. Technically,
it means we only consider proper orthochronous Lorentz
transformations.

2.2 Physics and geometry

By special relativity, the physically meaningful concepts
are the same for all inertial observers, and the refer-
ence frames of inertial observers are related by Lorentz-
transforms, that is, the symmetries of spacetime. Thus,
any physically meaningful concept must be a geometric
concept on spacetime.

Since all the physical concepts are already geomet-
ric, what work is left to do? Define the concepts in a
coordinate-free language!

The usual definition of physical concepts uses a coordi-
nate frame, but this is inconvenient for geometric reason-
ing. This is similar to the situation where a circle can be
defined as {(x, y) : (x−x0)2+(y−y0)2 = r2} in a certain
coordinate system, or as “the set of points having equal
distance to a point” with no reference to any coordinate
system. The second definition allows us to avoid algebra
and proceed by geometric arguments.

We develop some of the geometry of spacetime, a bit
more than enough for the purpose of this paper, so that
any reader unfamiliar with this geometric view can be
brought up to speed.

2.3 Timelike, lightlike, spacelike

The points are events in spacetime. Two points are time-
like separated iff it’s possible to send a massive particle

x

t

Figure 1: Three kinds of separations in 1+1 dimensional
spacetime. The dashed lines are lightlike, the blue lines
are timelike, and the black lines are spacelike.

from one to the other. Two points are lightlike separated
iff it’s possible to send a light from one to the other. Oth-
erwise they are spacelike separated. Due to the choice of
c = 1, the lightlike separations all make a 45◦ angle with
the t-axis when drawn in a coordinate system.

Similarly, a 4-vector is timelike, lightlike, or spacelike,
based on how its head and tail are separated. These are
shown in Figure 1.

2.4 Unit timelike vector

Any unit timelike vector et is timelike, so it can be tra-
versed by a massive particle, or indeed, a clock, if the
clock is small enough to be thought of as a particle. It
is of unit length, meaning that the clock would measure
unit time while it follows et.

Fix a reference frame, then the unit timelike vectors
are et = (t, x, y), ||et|| = 1, that is, t2 − x2 − y2 = 1.
We want the timelike vectors to point to the future, so
t > 0, then, we see that the unit timelike vectors have
their heads on the positive sheet of hyperbola:

H = {t2 − x2 − y2 = 1, t > 0} (3)

Figure 2 shows the case for 1 + 1 dimensions.

2.5 3- and 4-velocity

We give a careful, geometry-flavored definition of 3- and
4-velocity, because the standard textbooks don’t make
the geometry clear. If you understand Figure 3, you can
skip this section.

Consider a massive particle moving at constant speed,
seen by a stationary observer. Its worldline is a straight
line. Its 4-velocity is its 4-displacement during 1 unit of
its proper time. Its 3-velocity is its 3-displacement during
1 unit of the stationary observer’s time.

2



x

t

Figure 2: The hyperbola of unit timelike vectors. A clock
takes unit time to follow any of the unit timelike vectors.

Figure 3: The vectors are 4-velocities. Their intersec-
tions with the disk are their corresponding 3-velocities.
Γ maps a 3-velocity v to its corresponding 4-velocity U ,
and O, v, U are collinear.

Massive particles move slower than light, so the set of
all possible 3-velocities is the open disk of radius c = 1:

D = {(vx, vy) ∈ R2 : v2x + v2y < 1} (4)

The 4-velocity is time-like, so its norm is the proper time
experienced by a particle moving along the 4-velocity
vector, which is 1 by definition. So it is a unit time-
like vector, so the hyperboloid H is the set of all possible
4-velocities.

The definition of 4-velocity is observer-independent,
but 3-velocity depends on the choice of observer, in order
to define the t = 1 plane, so it is not.

From the definition of 3- and 4-velocities, we see a
geometric relation between the two.

Let the particle have 3-velocity v = (vx, vy), and 4-
velocity U = (Ut, Ux, Uy). Then the 4-displacement of
the particle during 1 unit of the stationary observer’s
time is (1, vx, vy), and the 4-displacement of the particle
during 1 unit of its proper time is (Ut, Ux, Uy). Thus,
(0, 0, 0), (1, vx, vy), and (Ut, Ux, Uy) are collinear, illus-
trated in Figure 3.

Figure 4: Given et, shine a lightcone from −et forwards
in time, and another lightcone from et backwards in time.
Their intersection is S(et).

2.6 Perpendicularity

U ⊥ V is defined by U · V = 0. If in coordinate system,
U = (t, x, y), V = (t′, x′, y′), then it’s defined by tt′ −
xx′− yy′ = 0, but when one of U, V is timelike, there’s a
more pictorial definition.

Given any unit-length timelike vector et, we define its
spacecircle1 as

S(et) = {e : ||e|| = 1, e ⊥ et} (5)

One way to imagine a spacecircle S(et) is to imagine
it as the edge of a saucer with radius 1, and the saucer
is flying at 4-velocity et. Then, in the saucer’s frame,
et = (1, 0, 0) and S(et) = {(0, cos θ, sin θ) : 0 ≤ θ < 2π}.

A pictorial way to construct S(et) from et is by shining
a cone of light from −et forwards in time, and shining
another cone of light from et backwards in time. Their
intersection is S(et). This is illustrated in Figure 4. This
procedure is observer-independent, and it works in one
of the frames, namely the saucer’s frame, so it works in
any frame.

In a frame where et does not have coordinates (1, 0, 0),
S(et) would appear tilted and elliptical, but that’s only
because our diagrams are Euclidean, so they don’t faith-
fully picture the geometry of spacetime.

In 1 + 1 dimensions, it’s clear to see in the spacetime
diagram that et and S(et) are symmetric across the light-
cone. This is true for 1 + 2 dimensions too. Both cases
are illustrated in Figure 5.

Also, any spacecircle is made of unit spacelike vectors,
and in any reference frame, the set of all unit spacelike
vectors makes a one-sheet hyperboloid

H′ = {(t, x, y) : t2 − x2 − y2 = −1} (6)

1We call it a spacecircle, because we’ll plot it in 1+2 dimensions.
In 1+3 dimensions, it might be more properly called a spacesphere.
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(a) et and S(et) are symmetric across
the light cone. S(et) is the intersec-
tion of l with the hyperbola t2 −x2 =
−1.

(b) The same situation but in 1 + 2 dimensions.
S(et) is the intersection of l with the hyperboloid
t2 − x2 − y2 = −1.

Figure 5: Symmetry between et and S(et)

Thus, in any frame, if et is known, S(et) can be con-
structed by drawing the plane that’s symmetric to et
across the lightcone, and its intersection with the hy-
perboloid H′ is S(et). Figure 5 illustrates both 1 + 1 and
1 + 2 dimensional cases.

2.7 Infinitesimal boosts

Consider 1 + 1-dimensional spacetime, and consider two
frames: the rest frame {et, ex}, and a frame {e′t, e′x}
that’s boosted by v in the +x direction. The transform
is [

e′t
e′x

]
=

[
γ vγ
vγ γ

] [
et
ex

]
(7)

Figure 6: An infinitesimal boost of a frame et, ex to et +
det, ex + dex. Note that dex ‖ et, and det ‖ ex.

where γ = 1/
√

1− v2. For infinitesimal v, to first order,[
e′t
e′x

]
=

[
1 v
v 1

] [
et
ex

]
(8)

So, for an infinitesimal boost in the x-direction, ex
is changed by dex = ex − e′x = vet, thus dex ‖ et.
This works in general for 1 + 3-dimensional spacetime,
so we obtain the following rule: Under an infinitesi-
mal boost, dex, dey, dez are all parallel to et. Also,
det ‖ span{ex, ey, ez}, with its direction determined by
the direction of the boost.

This allows us to perform an infinitesimal boost on
any frame pictorially. Consider Figure 6. The frame
defined by et, ex looks tilted in the spacetime diagram,
still dex ‖ et under an infinitesimal boost.

2.8 Boosting a spacecircle

Given a flying saucer et, and its spacecircle S(et), if the
saucer accelerates a tiny bit, without rotating, then S(et)
is boosted infinitesimally to S(e′t).

To find where any given e ∈ S(et) goes after the boost,
a pictorial method is:

First, draw S(et) and S(e′t), by the intersection method
in Figure 5. Then, for any e ∈ S(et), draw a line parallel
to et. The intersection with S(e′t) is where e is boosted
to. This is illustrated in Figure 7.

3 Deriving the Wigner rotation

Fix a reference frame, and consider a particle that starts
at rest, undergoes a series of pure boosts, and returns to
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Figure 7: An infinitesimal boost of a frame. Its 4-velocity
changes from U1 to U2, and its spacecircle changes from
S1 to S2. The gray lines are the trajectories of the points
on the spacecircle during the boost. Notice how they are
all parallel to U1.

rest (but not necessarily returning to original position).
Then, its 3-velocity v traces out a closed path in D, the
space of 3-velocities.

Let et′ be the particle’s 4-velocity. We will follow the
path of ex′ ∈ S(et′) during the motion, and find out
that it would rotate by a certain angle dθ during the
motion. Since ex′ determines the “starting point” of the
spacecircle, it means that the whole spacecircle would
also have rotated by dθ during the motion. This is the
Wigner rotation angle.

3.1 A pure boost

In 1+2 dimensions, fix a stationary reference frame, and
consider a particle accelerating by a series of boosts in the
x-direction, its 3-velocity changes from (0, 0) to (v, 0), its
4-velocity from U1 = (1, 0, 0) to U2 = (γ, vγ, 0), where
γ = 1/

√
1− v2. During this process, et′ moves from U1

to U2, and S(et′) moves from S1 = S(U1) to S2 = S(U2).

Consider the trajectory of any e′ ∈ S(e′t). The curve
e′(t) has tangent de′/dt, and so it must be parallel to
et′(t). Since the particle only accelerates in the x direc-
tion, et′ is in the t−x plane at all times, so the trajectory
of et′(t) must lie in a plane parallel to the t − x plane.
Some trajectories are shown in Figure 9a, both shown in
the full (t, x, y) space, as well as a projection onto (x, y)
plane viewed from above.

Since U2 = (γ, vγ, 0), by symmetry across the light
cone, (ex′)2 = (vγ, γ, 0), and when projected to the (x, y)
plane, proj((ex′)2) = (γ, 0). Thus, the projected S2 is an
ellipse with semi long axis γ.

Figure 8: The 3-velocity traces around an infinitesimal
sector of radius v and angle dθ in D. The whole motion
consists of three boosts, the second one is infinitesimal.
The first and the third are straight boosts.

3.2 Three pure boosts

Now let the particle undergo three boosts, such that its
3-velocity traces around an infinitesimal sector of radius
v and angle dθ in D, as shown in Figure 8.

During the first boost, et′ moves from U1 to U2, and
S(et′) moves from S1 to S2. This process is shown in
Figure 9a.

During the second boost, et′ moves from U2 to U3.
This boost is infinitesimal, so any e ∈ S2 moved by an
infinitesimal amount de that is parallel to U2.
U2 is parallel to the (t, x) plane, so de is parallel to the

(t, x) plane too. So, when projected to (x, y) plane, de is
parallel to the x axis. This process is shown in Figure 9b.

During the third boost, et′ moves from U3 to U1. The
third boost is similar to the first boost, but reversed,
and rotated by an angle dφ. This process is shown in
Figure 9c.

Now follow the trajectory of ex′ during the motion,
projected onto the (x, y) plane. This is shown in Fig-
ure 10. It’s a simple exercise to show that the distance
between points 2 and 3 in the figure is second-order in
dφ, and so can be ignored. Then, the arc from 1 to 4 has
length

dθ = 1̂− 4 = dφ(γ − 1)

Notice what has been proved here. The particle has
returned to rest, but its ex′ vector has not returned to the
original position, instead, it had rotated by dθ clockwise.
This is Wigner rotation.
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(a) First boost.

(b) Second boost.

(c) Third boost.

Figure 9

Figure 10: The trajectory of ex′ during the motion, pro-
jected onto the (x, y) plane. The circle and the ellipses
are S1, S2, and S3. dθ is the Wigner rotation angle. Tri-
angle ∆O24 is enlarged for clarity.

3.3 A full cycle of boosts

Suppose that the particle is rotating around the origin at
3-speed v, then its 3-velocity follows the circular path in
Figure 11. We can cut it into many small cycles, so that
the Wigner rotation in each small cycle causes a Wigner
rotation of angle

dθ = dφ(γ − 1) (9)

and then, summing these rotations up, we have

∆θ = 2π(γ − 1)

is the Wigner rotation angle during one revolution of the
particle. The direction of Wigner rotation is clockwise,
while the particle is moving counterclockwise, so to ac-
count for the sign, we have

∆θ = −2π(γ − 1) (10)

3.4 Thomas precession formula

The angular speed of Wigner rotation observed in the
stationary frame is

ωT = |∆θ/T | = 2π(γ − 1)/(2πR/v) =
γ − 1

v2
va

where T is the orbit period, R is the radius of the parti-
cle’s orbit, and a = v2/R is the particle’s 3-acceleration.
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Figure 11: The path of the 3-velocity of the particle on
a circular motion is dissected into infinitesimal sectors.
Each sector gives a Wigner rotation by dθ = −dφ(γ−1),
giving a total of ∆θ = −2π(γ − 1).

To account for the direction of Wigner rotation, we
have the 3-vector equation.

ωT =
γ − 1

v2
a× v

Simplifying by γ = 1/
√

1− v2,

ωT =
γ2

γ + 1
a× v (11)

which is the Thomas precession formula.

4 Implications for pedagogy

The Wigner rotation is every bit as paradoxical and fas-
cinating as the more popular phenomena of special rel-
ativity. Regarded as a paradox, it is arguably a more
significant paradox than the “twin paradox” or “ladder
and barn paradox”, since it has a very practical signifi-
cance: Electrons orbit the nucleus at relativistic speeds,
and the Wigner rotation becomes significant, the effect
of which shows up in the fine structure of atomic spectra,
and is verified countless times.

Despite this, it is a very obscure phenomenon. We
checked the whole library aisle on relativity, and Gold-
stein’s Classical Mechanics is the only textbook we found
that treats it in any detail. We suspect that this neglect

is half because a purely algebraic treatment is very ardu-
ous, and half due to a superstition that special relativity
cannot deal with accelerating frames.

This highly pictorial method of deriving the Wigner
rotation in the paper was discovered by the author dur-
ing their attempt at a visual understanding this phe-
nomenon, and to the best of our knowledge, is new. This
new method allows Wigner rotation to be easily derived
and understood, overcoming the barrier of formidable al-
gebra. The Thomas precession formula, very useful in
atomic physics, is derived as a simple corollary.

The author strongly recommend Wigner rotation, de-
rived by the geometric method in the paper, to be incor-
porated in introductory courses on special relativity.

5 Sidenotes

5.1 A hint of hyperbolic geometry

Consider a particle moving circularly at small 3-velocity
v, then after completing one cycle, its Wigner rotation
angle is |∆θ| = 2π(γ − 1) ≈ πv2.

This looks like the area of a circle of radius v, which is
the area enclosed by the curve traced out by the particle’s
3-velocity. As it turns out, it’s possible to make this
connection rigorous.

In 1+2 dimensional spacetime, the space of 4-velocities
is H = {t2 − x2 − y2 = 1, t > 0}, then the Minkowski
metric on it makes it into the hyperboloid model of hy-
perbolic plane of curvature −1. This induces a metric on
the space of 3-velocities, D, making it into the Beltrami-
Klein disk model.

With this metric, if a particle moves in such a way, so
that its 3-velocity traces out a circuit l in D, then the
Wigner rotation experienced by the particle is the area
in the circuit!

This is proven in another paper of us. In that pa-
per, other geometric concepts of D, such as angles, dis-
tances, ideal points, etc, are given physical interpreta-
tions, too. This approach to special relativity through
hyperbolic geometry has been used as early as 1913, in
Émile Borel’s derivation of Wigner rotation, but it has
never been mainstream or gotten into textbooks.

5.2 A sci-fi story: Cosmic dark age

An alien race used to worship Rigel, Deneb, and Betel-
geuse, and they prayed towards the three stars. In or-
der to pray in the correct direction even without seeing

7



them, they constructed the Sacred Tripods, which are
steel tripods that are oriented, such that each leg points
at one of the Sacred Stars. These Sacred Tripods are
put in public places, and required to point exactly at the
Sacred Stars.

Then a Cosmic Dark Age began and the stars winked
out of existence, including the Sacred Stars, but the
aliens did not lose their faith. Instead, they intensified
their prayer in the hope of resurrecting the Sacred Stars.

In a region of space, there were two space stations A
and B, at rest with each other. The Sacred Tripod on
B was unstable and required yearly checking against the
more stable Sacred Tripod at A. So station A would
align its spare Sacred Tripod to its own one, put it on
a gimbal-mount, and send it by rocket to station B. B
would align its Tripod with the one sent, then let the
Tripod go back. Years passed, and aliens on station B
felt confident that its Tripod doesn’t drift more than 1′′

per year.

One day, an asteroid field blocked the straight path,
forcing the next shipment to make a big detour around
the asteroid field. When it arrived, to their astonishment,
it was found that the Tripod on B was clearly misaligned
with the Tripod from A. What’s going on?

Answer: Wigner rotation of the Tripod from A, caused
by the detour.

5.3 Further reading

[Wal99] gives a thorough discussion of the early history of
use of hyperbolic geometry in special relativity. [Ara97]
derives the same result. [Mal13] derives the same result
following Émile Borel’s derivation, and gives historical
notes. [CA01] is a pedagogical paper that applies hyper-
bolic geometry to special relativity. [Kri09] is a pedagog-
ical paper that uses geometric reasoning to study Fou-
cault Pendulum and Wigner rotation in a unified way,
and hints at their common geometric nature.

On the pure algebra side, [OV11] is a pedagogical pa-
per that studies Wigner rotation in gory algebraic details,
and [RS04] is a lengthy paper that gives a thorough treat-
ment on Wigner rotation, that unfortunately does not
have pictures.
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