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Abstract

This document gives an illustrated overview of several areas in dynamical systems,
at the level of beginning graduate students in mathematics. We start with Poincaré’s
discovery of chaos in the three-body problem, and define the Poincaré section method
for studying dynamical systems. Then we discuss the long-term behavior of iterating a
diffeomorphism in Rn around a fixed point, and obtain the concept of hyperbolicity. As
an example, we prove that Arnold’s cat map is hyperbolic.

Around hyperbolic fixed points, we discover chaotic homoclinic tangles, from which
we extract a source of the chaos: Smale’s horseshoe. Then we prove that the behavior
of the Smale horseshoe is the same as the binary shift, reducing the problem to symbolic
dynamics. We conclude with applications to physics.

1 The three-body problem

1.1 A brief history

The first thing Newton did, after proposing his law of gravity, is to calculate the orbits of two
mass points, M1,M2 moving under the gravity of each other. It is a basic exercise in mechanics
to show that, relative to one of the bodies M1, the orbit of M2 is a conic section (line, ellipse,
parabola, or hyperbola).

The second thing he did was to calculate the orbit of three mass points, in order to study
the sun-earth-moon system. Here immediately he encountered difficulty. And indeed, the three
body problem is extremely difficult, and the n-body problem is even more so.

We will not give the full history of how Poincaré studied the n-body problem. A good
overview is in [Chenciner, 2015]. In short, in 1887, the king of Sweden proposed a prize for a
solution to the n-body problem, and Poincaré failed to solve it, but discovered one reason why
the problem is so difficult. He found that chaos is everywhere in the n-body problem, even in
the most basic version – the planar, circular, restricted three-body problem.

We shall not say more about the general n-body problem, other than showing Figure 1,
which demonstrates the beautiful chaos.

1.2 The planar, circular, restricted three-body problem

Refer to Figure 2. Consider the earth, the moon, and a spacecraft moving around them. The
earth and moon circle each other in roughly circular orbits, and the spacecraft moves under
the effect of their gravity, but does not affect the moon or the earth because it is so small.

∗Project paper for the course Ergodic Theory taught by Tanja Schindler at Australian National University
in 2019 Semester 1.
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Figure 1: A typical three-body problem trajectory. Figure from [Hut, 1993].

Viewed at the barycenter, the earth and the moon both move in circular orbits with the
same angular velocity Ω. So, if we use a rotating barycenter frame, the earth and the moon
are both static. Then it only remains to study the motion of the satellite.

Let the plane of rotation be the xy-plane, and the axis of rotation be the z-axis. Then, when
viewed in the rotating frame, the satellite experiences three forces: attraction to the earth, to
the moon, and a centrifugal force parallel to the xy-plane. Then we see that if the satellite has
initial position (x, y, z) and velocity (vx, vy, vz), and z = 0, vz = 0, then it will always remain
so, since there is no force pulling it along the z-axis.

Thus we have obtained the planar (in the xy-plane), circular (the earth-moon system moves
circularly), restricted (the satellite is too small to affect the earth-moon system), three-body
problem. This is as simple as it could possible be, and it still contains chaos.

1.3 Reducing to two dimensions

Given any initial conditions x(0), y(0), (vx(0), vy(0)) of the satellite, there exists a unique
solution (x(t), y(t)) that satisfies its Newtonian equations of motion. This is how one could
solve the orbit of the satellite, but there are other ways to do so. One could instead consider
the phase space of the satellite

(x, y; vx, vy) ∈ R2 × R2. (1)

Then, given a path in the phase space, parametrized by some arbitrary number s:

(x(s), y(s); vx(s), vy(s)), (2)

we can recover (x(t), y(t)) by solving the ODE

dx

ds

ds

dt
= vx,

dy

ds

ds

dt
= vy, (3)
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Figure 2: The earth-moon system. We drew it in inkscape.

which gives1 ds
dt

as a function of s and can be solved to give t = f(s), which can be inverted to
give s = f−1(t), which can then be plugged into (x(s), y(s)) to give (x(t), y(t)).

Thus, we only need to solve for orbits in the phase space that satisfies the equations of
motion. The phase space has 4 dimensions, and the curves have 1 dimension. We must cut
away 3 dimensions.

At each point (x, y; vx, vy) of the phase space, there is a corresponding energy of the satellite.
The explicit formula is not important, but it looks like

Energy = Kinetic energy + Gravitational energy + Centrifugal force field energy

By conservation of energy, any orbit in the phase space must remain on an equal-energy surface
E = E0, which has 4 − 1 = 3 dimensions. Call such a surface T . The surface can be
coordinatized by (x, y, vx), where vy can be solved from (x, y, vx), E = E0.

We could impose a new coordinate system of T such that one of the coordinates is circular.
For example, we could replace y by θ, so that y = x tan θ. Then we have the coordinates
(x, vx, θ) for the surface T . Under such coordinates, it look like a solid donut R2 × S1, where
S1 is the circle. In general, these coordinates can’t cover the whole T smoothly. For example,
(x, y) = (0, 0) cannot be covered smoothly. But such singularities are rare (of measure 0), and
we can ignore them in this document.

Then, we are concerned with curves in a torus. Let’s consider one such curve (x(s), vx(s), θ(s)).
If we are lucky, θ(s) is monotonically increasing, and so the curve would circle around the torus.
But we might get unlucky and the curve would fall back without completing a circle. This
can be fixed by another coordinate transform into action-angle coordinates, but we won’t give
the details here. Suffice to say that in the action-angle coordinates, the angle θ increases with
constant speed.

Then, we can study the curves as they move around the torus by studying their intersections
with the plane θ = 0. This is called the method of Poincaré section. See Figure 3 for an
illustration.

Let the plane of Poincaré section be P , then any point p ∈ P , there is a unique curve
through p, so we can trace the curve around the torus by one cycle and land at p′ ∈ P . This
gives a bijection F : P → P , which by Liouville theorem, is area-preserving. F is smooth,
since the equations of motion are smooth. So is its inverse, by reversing the direction of time.
Thus F is a diffeomorphism.

1Except when d
ds (x, y) = 0, that is, when the parametrization is degenerate. We assume that this does not

happen.
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Figure 3: The method of Poincaré section. The three-dimensional space represents the three-
dimensional slice of phase space under consideration, and the curves are solutions to the equa-
tions of motion in phase space. The curves are roughly circular, since we use the action-angle
coordinates. We take a two-dimensional plane P across the phase space, and study the inter-
sections of the curves with the plane, which defines a map F : P → P . Figure taken from
https://en.wikipedia.org/wiki/File:Poincare_map.svg, and edited in Inkscape.

Thus, we have reduced a three-body problem into a problem of measure-preserving diffeo-
morphisms on the plane. Poincaré did this, and discovered a chaotic complexity:

When we try to represent the figure formed by these two curves and their intersec-
tions in a finite number, each of which corresponds to a doubly asymptotic solution,
these intersections form a type of trellis, tissue, or grid with infinitely serrated mesh.
Neither of these two curves must ever cut across itself again, but it must bend back
upon itself in a very complex manner in order to cut across all of the meshes in
the grid an infinite number of times. The complexity of this figure will be striking,
and I shall not even try to draw it. [Poincaré, 1899, volume III, chapter XXXIII,
section 397]

2 Hyperbolicity of diffeomorphisms

2.1 Iteration around a fixed point

Consider a general diffeomorphism F on Rn. At each point x, F locally behaves as a linear
map, the linear differential map M = DFx : TxRn → TF (x)Rn, or more simply, DFx : Rn → Rn.
If F (x) = x, that is, x is a fixed point of F , then we can consider the effect of iterating F
upon a neighborhood of x. The long-term behavior of iterating F depends critically on the
eigenvalues of M = dFx.

M has n eigenvalues λ1, · · · , λn ∈ C with eigenvectors v1, · · · , vn ∈ Cn. For convenience,
we assume that there is no multiplicity.2

Since M is real, its complex eigenvalues are the roots of the real equation

det(λI −M) = 0,

2Our conclusions are valid for general M , though the proof would not be as geometric, but rather rely on
the Jordan normal form of the matrix.
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so if we have nonreal λ, its conjugate λ is also an eigenvalue. Correspondingly, we have
eigenvector v ∈ Cn, such that Mv = λv. Since Mv = Mv = λv, we have that v is the
eigenvector of λ.

Let vr = Re(v), vi = Im(v), so v = vr + ivi. If vr, vi are R-linearly dependent, then it’s
easy to show that λ must be real, so vr, vi are linearly independent. Decompose λ into polar
components λ = reiθ, then we have

Mvr = r(cos (θ)vr − sin (θ)vi), Mvi = r(cos (θ)vi + sin (θ)vr).

So the effect of M on the 2-dimensional real subspace 〈vr, vi〉R ⊂ Rn is a “rotation” and a
scaling by r. Since vr and vi might not be of the same length, so the rotation is really an
“elliptical rotation”. All in all, the effect of M on 〈vr, vi〉R is an “elliptical spiraling”.

Thus, M splits Rn into a direct sum of linear subspaces, as

Rn =

(
k⊕
j=1

〈vj〉R

)⊕(
k+l⊕

j=k+1

〈Re(vj), Im(vj)〉R

)
, (4)

where we have arranged so that λ1, · · ·λk are real, and

λk+1 = λk+l+1, · · ·λk+l = λk+l+l = λn,

are nonreal, conjugate pairs. The action of M on Rn is a scaling by λj on 〈vj〉R, and an elliptical
spiraling on 〈Re(vj), Im(vj)〉R.

Now, if |λ| < 1, and λ is real, then the corresponding 〈v〉R is shrunken by M ; if λ is
nonreal, then the corresponding 〈Re(v), Im(v)〉R is rotated-and-shrunken by M . Similarly for
|λ| = 1, |λ| > 1.

Thus we obtain a splitting of Rn = E<1 ⊕ E=1 ⊕ E>1, corresponding to the three cases of
|λ|. The effect of M is to rotate-and-shrink E<1, rotate-and-expand E>1, and merely rotate
E=1. All rotations, as noted, are elliptical.

Since as we iterateM , all points of E<1 fall toward 0, so we call it the stable subspace ofM ,
and E>1 the unstable subspace of M . Points in E=1 circle around 0, neither approaching nor
escaping it, so it’s called the central subspace. The usual notations for them are Es, Eu, Ec.

There is another way to define the three subspaces without explicitly calculating the eigen-
vectors.

Consider some eigenvalue |λ| < 1, and its eigenvector v. If λ is real, then

∀w ∈ 〈v〉R , ‖Mnw‖ ≤ |λ|n‖w‖.

If λ is nonreal, then v = vr + ivi,

∀w ∈ 〈vr, vi〉R , ‖Mnw‖ ≤ c|λ|n‖w‖,

where

c =
long axis

short axis
of the ellipse {vr sin (θ) + vi cos (θ) |θ ∈ [0, 2π]}.

The proof is visual: each iteration of M shrinks the ellipse by |λ|.
Thus, for big enough c and some λ ∈ (0, 1), we have

∀n = 1, 2, · · · , ∀w ∈ Es, ‖Mnw‖ ≤ cλn‖w‖.

Similarly, for big enough c and some λ ∈ (0, 1), we have

∀n = 1, 2, · · · ,∀w ∈ Eu, ‖M−nw‖ ≤ cλn‖w‖.
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And for the subspace between the two extremes, the growth behavior under iterations of M is
neither exponentially increasing nor decreasing. That is, for any c, d > 0, and 0 < λ, ξ < 1, we
do not have

∀n ∈ Z,∀w ∈ Ec, ‖Mnw‖ ≤ cλn‖w‖,

or
∀n ∈ Z,∀w ∈ Ec, ‖M−nw‖ ≤ dξn‖w‖.

We say that x is a hyperbolic fixed point of F iff Ec = 0, that is, Rn = Es ⊕ Eu, and all
points in Rn either fall toward 0 or ∞ under iteration of dFx.

The name “hyperbolic” can be understood in many ways. One way is to note that the
prototypical hyperbolic fixed point is (0, 0) for the map F (x, y) = (2x, 1

2
y) on R2. Another

way, which would make more sense after reading the next section, is to note that the geodesic
flow on a hyperbolic plane is hyperbolic on the whole plane.

2.2 Hyperbolicity in general

In general, consider a diffeomorphism F on smooth manifold M . We wish to generalize the
concept of hyperbolicity when F fixes not a point x, but a set Λ. For example, suppose we have
M = R2 × S1, and F (x, y, eiθ) = (2x, 1

2
y, ei(θ+φ)), then we want to say that M is hyperbolic on

the central circle {(0, 0)} × S1.
Let Λ ∈ M be F -invariant, that is, F (Λ) = Λ. We say that Λ is a hyperbolic set of

F if we can split the sub-vector-bundle TΛM to a direct sum into a stable bundle Es and
unstable bundle Eu, such that both are F -invariant:

∀x ∈ Λ, dFx(E
s
x) = Es

F (x), dFx(E
u
x) = Eu

F (x). (5)

And there exists c > 0, λ ∈ (0, 1), such that

∀x ∈ Λ, ∀n = 1, 2, · · · ,∀w ∈ Es
x,‖d(F n)xw‖ ≤ cλn‖w‖

∀w ∈ Eu
x ,‖d(F−n)xw‖ ≤ cλn‖w‖.

(6)

In the definition of hyperbolicity, λ quantifies the hyperbolicity. The closer λ is to 0, the
more hyperbolic F is on Λ. The fact that λ < 1 gives a uniform bound to the hyperbolicity
of F on Λ. If there is no such uniform bound, then we would stray right into the study of
nonuniform hyperbolicity. Another generalization is to not require the clean split into a
stable and unstable bundle, but allow a central bundle as well. This is the start of partial
hyperbolicity. And they can even be combined into the study of nonuniform partial
hyperbolicity. The very strong reader who wishes to pursue these heavy complications should
consult [Barreira and Pesin, 2006].

2.3 Example: Anosov diffeomorphisms

If M is a hyperbolic set of F , then we say that F is an Anosov diffeomorphism on M .
As an example, consider the area-preserving Arnold cat map on the 2-dimensional torus.

Let

M =

[
2 1
1 1

]
, (7)

then define:

F : T 2 → T 2, F (x, y) = M

[
x
y

]
mod 1. (8)

The map is illustrated in Figure 4.
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Figure 4: Arnold cat map. The effect of one iteration of the map on the square is shown.
The stable and unstable manifolds of the fixed point (0, 0) are also shown. From Wikipedia
https://en.wikipedia.org/wiki/File:Arnoldcatmap.svg

The eigenpairs of M are

v1 =

[
1+
√

5
2

1

]
, λ1 =

1

2
(3 +

√
5); v2 =

[
1−
√

5
2

1

]
, λ2 =

1

2
(3−

√
5).

Thus, the unstable and stable bundles of F are

Eu = T 2 × 〈v1〉R , Es = T 2 × 〈v2〉R .

Theorem 2.1. The Arnold cat map is strongly mixing.

Proof We show that the map has Lebesgue spectrum, then by Theorem 2.12 of [Walters, 2000],
it is strongly mixing.

Define f(a,b) : T 2 → C by

f(a,b)(x, y) = exp(2πi(ax+ by)).

As in Fourier analysis, f(a,b) with (a, b) ∈ Z2 is an orthonormal basis of L2(T 2). It’s also
clear that f(a,b) ◦ F n = f(a,b)Mn .

Define an equivalence relation on Z2 by (a, b) ∼ (c, d) iff ∃n ∈ Z, such that (a, b)Mn = (c, d).
Any equivalence class under this relation is either finite, in which case it corresponds to a
periodic orbit, or infinite, in which case it is of the form

{(a, b)Mn|n ∈ Z} ∼= Z.

Consider any periodic point (a, b), such that ∃n > 0, (a, b)Mn = (a, b). But since M has
eigenvalues with absolute value 6= 1, (a, b) = (0, 0).

Thus, the equivalence relation splits Z2 into a countable number of classes, one being
{(0, 0)}, and all the others being of the form

{(a, b)Mn|n ∈ Z} ∼= Z.

Then, we take one representative from each of these infinite classes, to get (a1, b1), (a2, b2), · · ·.
Then define f0 = f(0,0) = 1, fj = f(aj ,bj) where j = 1, 2, · · ·, then we obtain an orthonormal

basis of L2(T 2) in the form of

f0

· · · f1 ◦ F−1 f1 f1 ◦ F 1 · · ·
· · · f2 ◦ F−1 f2 f2 ◦ F 1 · · ·

(9)
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which shows that F has a countable Lebesgue spectrum.
Note that the proof works in general for any n-by-n matrix M with integer entries, whose

inverse also has integer entries, and with absolute values of eigenvalues 6= 1. In this way, we
obtain a whole family of measure-preserving Anosov diffeomorphisms on tori.

2.4 Stable and unstable manifolds

Consider a hyperbolic fixed point x of a diffeomorphism F on a smooth manifold M . Consider
all points that, under iteration of F , converges to x. Call them the stable manifold of x:

W s(x) = {y ∈M | lim
n→∞

F n(y) = x}, (10)

and similarly define the unstable manifold of x:

W u(x) = {y ∈M | lim
n→∞

F−n(y) = x}. (11)

Locally at x, the behavior of F is approximated by the behavior of dFx, the local linear
approximation3. So split TxM into the stable and unstable subspaces TxM = Es⊕Eu, and we
should expect that, locally at x, W u should look just like Eu, but slightly curved. Similarly for
W s being a curved version of Es. See Figure 5. This observation can be rigorously stated as the
Hadamard–Perron theorem, but we will not do so here. The rigorously stated and proven
version can be found in the classic book on dynamical systems, [Katok and Hasselblatt, 1995,
section 6.2].

Figure 5: The Hadamard–Perron theorem. Here W s, W u denotes the stable and unstable
manifolds. They are slightly curved versions of Es, Eu, the stable and unstable subspaces. We
took a picture from https://math.stackexchange.com/questions/1241375 and edited it in
inkscape.

Theorem 2.2. W u and W s cannot have self-intersections.

Proof (sketch) If there is a self-intersection ofW s at some point y, then we iterate F on a small
neighborhood U of y, until W s∩U becomes close enough to x. Since F is a diffeomorphism, the
self-intersection of W s∩U is preserved after the iteration. Since by Hadamard–Perron theorem,
locally W s looks just like Es around x, and there is no self-intersection of Es. Contradiction.

Same argument works for W u, with F−1 instead of F .

3This is the discrete case of the Hartman–Grobman theorem.
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Also, consider two different fixed points x, x′, with their own stable and unstable manifolds.
W s(x) and W s(x′) cannot have intersections either, since otherwise the intersection point would
have to converge to boh x and x′. Similarly, W u(x) and W u(x′) are disjoint.

There can however be intersections between stable and unstable manifolds, and this is a
source of great complexity.

Suppose W u(x) and W s(x) intersect transversely at y, then we say that y is a homoclinic
intersection of x. Similarly, if x 6= x′, and y ∈ W u(x) ∩W s(x′), then y is a heteroclinic
intersection of x, x′.

Both homoclinic and heteroclinic intersections are prevalent in complicated dynamical sys-
tems, such as in the Poincaré section in the three-body problem. They can generate extremely
complicated behaviors, called the tangle. A schematic drawing is Figure 6. There are many
good explanations of the structure of the tangle, so we will not explain here. The reader can
simply search online, or read [Sussman and Wisdom, 2015, Chapter 4.3].

We will only consider the case where the intersection is transverse. It is possible that the
stable and unstable manifold are tangent at the intersection, which makes the dynamics even
more complex. Tangent intersections are studied in the context of structural stability, where
a dynamical system is varied gradually, causing the stable and unstable manifolds to change
shape, and some transverse intersection could become tangential, which marks a sudden change
in the behavior of the dynamical system.

Figure 6: A schematic drawing of homoclinic tangle. p is the hyperbolic fixed point and q
is a homoclinic intersection of p. Picture from https://www.mat.univie.ac.at/~bruin/VO_

DS2018.html.

Poincaré called the stable and unstable manifolds the “asymptotic manifolds”, because
the points on these manifolds approaches the fixed points asymptotically. Poincaré saw the
complexity of the tangle, even without computer simulations, testifying his amazing mind.

Homoclinic tangles can be absolutely beautiful. We cannot resist presenting some more in
Figures 7, 8.
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Figure 7: A homoclinic tangle computed by Carles Simò. Figure from [Chenciner, 2015, Figure
18].

Figure 8: A homoclinic tangle in the so-called Chirikov standard map, which we will not define
here, but it is a standard example in dynamical systems. Details can be found in the citation.
The green dots are elliptic stable fixed-points, and the red dots are hyperbolic unstable fixed-
points. Figure from [Tricoche et al., 2011, Figure 7(b)].
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3 Smale horseshoe

3.1 A brief history

In 1960, Stephen Smale was studying dynamical systems on the beaches of Rio de Janeiro, and
discovered the horseshoe map. This map turned out to exist in many dynamical systems, to
imply the existence of chaos. This was first published in [Smale, 1967] and it caused a great
flourishing of hyperbolic dynamics in the 60s and 70s. For a lively and detailed story of the
discovery, told straight from the horse’s (that is, Stephen Smale’s) mouth, read [Smale, 1998].

3.2 Finding the horseshoe

The Smale horseshoe is an abstraction that highlights certain features of the homoclinic tan-
gle. Even this abstraction, as we will see, already contains a rich chaos. From this, one can
appreciate that the full behavior of the homoclinic tangle is vastly more complicated.

There are in fact several ways to find a horseshoe in a homoclinic tangle. One way is
to consider as in Figure 9. Take a small ball around a hyperbolic fixed point x, and iterate
F on the ball forwards to obtain U , stretched along the stable manifold W s(x), and iterate
F backwards to obtain V , stretched along the unstable manifold W u(x). Then we obtain
something that is topologically the same as stretching a square, then folding it back to itself.

Let this stretch-and-fold map be F , and the square be S. We really don’t need F to
be measure-preserving, or be well-defined outside of S, since we are only concerned with the
topological effect of iterating F on a certain subset of S. So, define F on S by horizontally
compressing the square to width λ, then stretching to length γ, then fold back onto itself, as
in Figure 10.

Figure 9: Finding a horseshoe in a homoclinic tangle. x is a hyperbolic fixed point, and y is
a homoclinic intersection. A horseshoe emerges when we iterate a ball around x forwards and
backwards. We drew this in Inkscape.

Figure 10: A horseshoe map on a square. Figure taken from [Holmes, 1990, Figure 8a].
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3.3 The horseshoe dynamical system

It is inconvenient when points in S moves outside of S, because we have not defined F outside
of S, so we restrict our attention to points that never leave S, that is, we consider the invariant
set of the horseshoe

Λ = {x ∈ R2|∀i ∈ Z, F i(x) ∈ S} =
⋂
i∈Z

F i(S). (12)

As shown in the picture, S ∩ F (S) is made of two vertical stripes V0, V1, whose preimages
are two horizontal stripes H0, H1, that is, S∩F−1(S) = H0∪H1. After two iterations forwards
and backwards, we find that ∩2

i=−2F
i(S) is made of 16 little squares, and after a countable

number of iterations, we obtain the 2-dimensional Cantor set, shown in Figure 11 .

Figure 11: The 2-dimensional Cantor set. Figure from https://en.wikipedia.org/wiki/

File:Cantor_dust.png.

Thus

Theorem 3.1. The invariant set Λ of the horseshoe map is homeomorphic to the two-dimensional
Cantor set.

We consider the dynamical system (Λ, F ). There is not much of a horseshoe left anymore,
just a cloud of Cantor dust folding upon itself repeatedly.

Since F acts on S by stretching the vertical direction and squeezing the horizontal direction,
the vertical directions are the “unstable directions”, and the horizontal directions are the
“stable directions”, that is,

Theorem 3.2. Λ ⊂ S is a hyperbolic set of F , with stable and unstable bundles

Es = Λ× (R× {0}), Eu = Λ× ({0} × R). (13)

Now we define a way to encode the orbit of any x ∈ Λ under F as an infinite binary sequence
(· · · b−1b0b1 · · · ) ∈ {0, 1}Z. Let bi be the code of the vertical stripe that F i(x) belongs to. So
for example, knowing that b1 = 0 means x ∈ H0, and in general, knowing b1 · · · bn allows us
to pin down x in a horizontal stripe of height γ−n, and knowing b−n+1 · · · b0 allows us to pin
down x in a vertical stripe of width λn. Thus, this binary encoding is a bijection between Λ
and {0, 1}Z.

If we impose the product topology of {0, 1}Z, then the encoding map is a homeomorphism.
This can be proved by noting that the topology on Λ has a subbase defined by

{Λ ∩H|n ∈ N, H is one of the horizontal stripes making up S ∩ F−n(S)}

∪{Λ ∩ V |n ∈ N, V is one of the vertical stripes making up S ∩ F n(S)},

12

https://en.wikipedia.org/wiki/File:Cantor_dust.png
https://en.wikipedia.org/wiki/File:Cantor_dust.png


which is mapped by the encoding map to a subbase of {0, 1}Z{∏
i∈Z

Si

∣∣∣∣n ∈ N, b1 · · · bn ∈ {0, 1}, Si = {bi} if i = 1, · · ·n, else Si = {0, 1}

}⋃
{∏
i∈Z

Si

∣∣∣∣n ∈ N, b0 · · · b−n+1 ∈ {0, 1}, Si = {bi} if i = −n+ 1, · · · 0, else Si = {0, 1}

}
.

Let the encoding map be f : Λ → {0, 1}Z, and the left-shift map on {0, 1}Z be σ, then we
have f ◦ F = σ ◦ f , thus we get

Theorem 3.3. The dynamical system (Λ, F ) is topologically conjugate to the binary shift sys-
tem ({0, 1}Z, σ).

Thus, we have finally reduced the Smale horseshoe dynamics to a problem of symbolic
dynamics. We can then easily prove the following:

Theorem 3.4. The invariant set A of the horseshoe contains: (1) two fixed points, and orbits of
every finite period k ∈ N, and a countable infinity of periodic orbits; (2) an uncountable infinity
of nonperiodic orbits, among which are countably many homoclinic points and countably many
heteroclinic points, and (3) uncountably many dense orbits.

Proof We prove these for the binary shift system instead, since they are conjugate.

(1) The only two fixed points are (0)′ and (1)′ where ()′ means periodic repeat. Similarly we
can obtain periodic points of all orders as (00 · · · 01)′. In general, every periodic orbit can
be specified by a finite binary sequence.

(2) All other points are not periodic, and since {0, 1}Z is uncountable, there are an uncountble
infinity of nonperiodic points.

A point is a homoclinic point of the fixed point (1)′ iff it has both ends being repeated 1,
and there are only countably many of these. Similarly for the homoclinic points of (0)′,
and the two kinds of heteroclinic points.

(3) Enumerate all the countably many finite binary sequences as

· · · b−2, b−1, b0, b1, b2, · · ·

then for any (· · · c−2c−1c0c1c2 · · · ) ∈ {0, 1}Z,

(· · · c−2b−2c−1b−1c0b0c1b1c2 · · · )

has an orbit that approaches every point of {0, 1}Z arbitrarily closely, thus it has a dense
orbit.

Our construction of the Smale horseshoe dynamical system (Λ, F ) is rather unrealistic,
since usually when we encounter horseshoes in actual homoclinic tangles, as in Figure 9, the
horseshoe is curvy and deformed. However, it can be proved that even if we deform the
horseshoe map, the dynamical system is still conjugate to the binary shift system. That is, the
horseshoe dynamical system is structurally stable.
Proof (sketch) In proving the conjugacy, we only used some qualitative geometric properties
of the map, which are preserved under any small perturbation. Thus, the theorem is true for
any deformation of the horseshoe map that preserves these qualitative geometric properties.

So we obtain the general Smale–Birkhoff homoclinic theorem:
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Theorem 3.5. Let F : R2 → R2 be a diffeomorphism with a hyperbolic saddle fixed point x,
with a homoclinic intersection y. Then, ∃N ∈ N, FN has a hyperbolic set Λ, such that (Λ, FN)
is topologically conjugate to the binary shift ({0, 1}Z, σ).

A hyperbolic saddle fixed point usually imply a homoclinic intersection, which implies a
Smale horseshoe, which has a chaotic dynamic that’s conjugate to the binary shift system.

In fact, we can consider horseshoes of far more general shapes, and they generate even richer
structures of chaos. A starting point would be [Kennedy et al., 2001]. Cool pictures of such gen-
eral horseshoes can be found in studies of “pruned horseshoes”, such as [de Carvalho and Hall, 2002].

4 Chaos in physics

After such a long trek into the heart and hoof of mathematical chaos, we can get back to
physics.

By numerical simulation of the solar system, chaos has been discovered in the motion of
the planets, especially Mercury and Mars. In fact, according to [Laskar and Gastineau, 2009],
there is a 1% chance that Mercury’s eccentricity could exceed 0.7 within 5 billion years, which
could cause all kinds of dire outcomes, such as collision with Earth.

Figure 12: Mercury’s eccentricity over 5 billion years can be seen to be chaotic. Each line
represents one of the 2501 runs of the simulation, each run differing only slightly in the initial
conditions. Figure from [Laskar and Gastineau, 2009].

The tokamak is a device for confining hot plasma with magnetic field, and is one of the lead-
ing candidates for fusion energy. The main problem with tokamak is the difficulty in keeping
the plasma from hitting the wall, as hot plasma is apt to drift out of confinement. Homoclinic
tangles have been numerically predicted to exist [Roeder et al., 2003] and experimentally ob-
served [Evans et al., 2005]. In this way, understanding of homoclinic tangles allows one to
better understand the dynamics of confined plasma and the heating of the tokamak wall, and
get closer to fusion energy.

Chaos theory became famous in the 1980s, and one main example used to illustrate the
chaos in the world is the weather system. Unsurprisingy, horseshoes can be found in the study
of hurricanes [Du Toit and Marsden, 2010], which is reminiscent of the classic question of chaos
[Lorenz, 1972]:

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

14



Finally, while we have been exclusively dealing with classical mechanics, horseshoes and
chaos can also be found in quantum mechanics. Quite notable is [Cvitanović, 1991], which
uses the aforementioned “pruned” horseshoes to study classical and quantum chaos.
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[Roeder et al., 2003] Roeder, R., Rapoport, B., and Evans, T. (2003). Explicit calculations of
homoclinic tangles in tokamaks. Physics of Plasmas, 10(9):3796–3799.

[Smale, 1967] Smale, S. (1967). Differentiable dynamical systems. Bulletin of the American
mathematical Society, 73(6):747–817.

[Smale, 1998] Smale, S. (1998). Finding a horseshoe on the beaches of Rio. The Mathematical
Intelligencer, 20(1):39–44.

15



[Sussman and Wisdom, 2015] Sussman, G. J. and Wisdom, J. (2015). Structure and interpre-
tation of classical mechanics. Mit Press.

[Tricoche et al., 2011] Tricoche, X., Garth, C., and Sanderson, A. (2011). Visualization of topo-
logical structures in area-preserving maps. IEEE transactions on visualization and computer
graphics, 17(12):1765–1774.

[Walters, 2000] Walters, P. (2000). An introduction to ergodic theory, volume 79. Springer
Science & Business Media.

16


	The three-body problem
	A brief history
	The planar, circular, restricted three-body problem
	Reducing to two dimensions

	Hyperbolicity of diffeomorphisms
	Iteration around a fixed point
	Hyperbolicity in general
	Example: Anosov diffeomorphisms
	Stable and unstable manifolds

	Smale horseshoe
	A brief history
	Finding the horseshoe
	The horseshoe dynamical system

	Chaos in physics

