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Abstract

This is a literature review on 223 papers that cited [Garg et al., 2022]
as of 2024-04-18, categorized into 5 classes.

There is an appendix on how to do literature review with the help
of large language models.

1 Overview

In [Garg et al., 2022], the authors studied how a GPT-2-like Trans-
former would perform in-context learning of random simple functions
sampled from a class, such as random linear functions.

This paper is an exhaustive literature review of all 223 papers that
has cited it at the time of writing (2024-04-18). We categorize them
into the following classes.

1. Bayes and generalization: Many papers showed that the
trained model acts like a Bayes optimal predictor with a prior
fitted to the training set. However, a few papers showed that
models can learn to generalize beyond the specific ICL tasks
presented in the training set. They typically find that models,
when trained on enough variety of ICL tasks, can generalize, and
perform better on the test set than predictors that are Bayes-
optimal on the training set.

2. Mechanistic interpretation: These papers investigate the in-
ternal mechanisms of trained models, particularly how they en-
code information and perform computations within their layers.
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They often find that the trained model performs Bayes-optimal
prediction.

3. Theoretical foundations: These papers contain formal proofs
about the learning dynamics and generalization properties of ICL
models, typically by heavy linear algebra.

4. Empirical improvement: These papers empirically explore
how to improve ICL performance by varying dataset composi-
tion, model architecture, curriculum learning strategies, etc.

5. Irrelevant: These papers are ignored. They typically cite [Garg et al., 2022]
in a perfunctory paragraph in the perfunctory literature review.

Most subsequent work follows [Garg et al., 2022] in training GPT-
2-like transformers on ICL with linear regression tasks, so this is the
default setting. We only note where they differed.

2 Previous work

This section reviews precedent works that are most relevant for [Garg et al., 2022]
and its descendant works.

2.1 Empirical Findings

The widespread interest in ICL started with [Brown et al., 2020], which
demonstrated the potential of ICL with GPT-3. Subsequent work,
such as [Wei et al., 2022], has further improved ICL capabilities through
instruction tuning, while [Kojima et al., 2022] introduced chain-of-
thought (CoT) prompting, triggering widespread interest in prompt
engineering.

[Min et al., 2022b] showed that the mechanism of ICL is nontrivial
and unintuitive, by empirically investigating LLM with ICL. They
found that it is unnecessary to have correct in-context examples, and
that the examples are mainly informative for other reasons. This
showed the necessity in deeply explaining simple toy models of ICL.

[Chan et al., 2022] showed that pretrained LLM are better able to
do ICL if the pretraining dataset has certain properties, such as non-
IID, burstiness, long-tailed distributions, and contextuality. This can
be intuitively interpreted as saying that LLM pretrained on generat-
ing text that resembles the prompt format of ICL are better at ICL.
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This motivates the toy model of [Garg et al., 2022], where the entire
training dataset is purely ICL.

3 Garg et al

[Garg et al., 2022] conducted a comprehensive study on the ICL ca-
pabilities of transformers across various simple function classes. Their
work aimed to understand how effectively transformers can learn and
generalize from a few input-output examples provided as context.

The study employed a setup where a transformer would be trained
on different function classes, including linear, sparse linear, two-layer
neural networks, and decision trees. The training process involved
presenting the model with prompts containing input-output pairs and
optimizing it to minimize the prediction error on unseen inputs.

The key aspects of this work are

1. Bayes optimal prediction: For linear regression tasks, the
trained transformers exhibited ICL behavior close to that of
Bayesian predictors, which in this case means min-norm least
squares regression.

2. Generalization: The trained transformers generalized to new
inputs, even in out-of-distribution (OOD) scenarios such as skewed
input covariance, or different orthants.

3. Mechanistic interpretation: For sparse linear regression, the
trained transformers demonstrated performance comparable to
iterative LASSO regression in a single pass. It was unclear how
they performed this task, hinting at nontrivial mechanistic in-
terpretation.

4. Curriculum learning: If the complexity of tasks gradually
increased from easy to hard, training speed and performance
greatly increased.

Each aspect of the work has been investigated further in subse-
quent work.
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4 Subsequent work

4.1 Optimality and generalization

Many subsequent papers investigated the trained models, and typi-
cally found a three-step process: When the model has low capacity
(shallow and narrow), the trained model would learn to perform one-
step gradient descent. When the model has high capacity, the trained
model would learn to perform Bayes-optimal prediction, often rivaling
the best available algorithm.

Several studies interpret ICL through the lens of Bayesian infer-
ence. [Min et al., 2022a] propose a noisy channel model for text clas-
sification with LLMs, where the probability of an input given a label
is proportional to the product of the likelihood and prior.

[Xie et al., 2022] view ICL as implicit Bayesian inference, where
the model integrates over possible concepts to generate outputs con-
ditioned on the prompt.

These Bayesian interpretations suggest that LLMs may be per-
forming a form of probabilistic reasoning, integrating prior knowledge
with the information provided in the context to make predictions.
This aligns with the observation that LLMs trained on diverse and
realistic data exhibit better ICL capabilities, as such data provides a
richer prior for the model to leverage.

Many empirical studies agree with [Garg et al., 2022] that the trained
model acts like a Bayes-optimal ICL with a prior distribution fitted
to the training dataset.

However, several studies showed that under certain conditions, the
trained model can generalize beyond the training dataset.

[Yadlowsky et al., 2023] was the earliest subsequent work that tried
mixtures of different function classes. They found that models trained
on a balanced mixture had better generalization OOD, a finding con-
firmed subsequently.

[Raventós et al., 2024] show that with sufficient task diversity in
the training set, ICL models can achieve near-optimal performance on
unseen tasks, even surpassing Bayesian predictors based on the convex
hull of the training data.

Similarly, [Panwar et al., 2023] and [Panwar et al., 2024] demon-
strate that when exposed to a sufficiently diverse set of function classes
during training, ICL models can generalize to entirely new classes,
outperforming Bayesian predictors limited to the training set.
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5 Mechanistic interpretation

A central question in ICL research is how LLMs encode information
and perform computations within their layers to achieve their im-
pressive performance. Several studies have investigated this aspect,
revealing intriguing insights into the inner workings of ICL models.

[Guo et al., 2023] investigated ICL for featurized linear regression,
where the input undergoes a fixed non-linear transformation. They
theoretically and empirically demonstrate that Transformers can ef-
fectively learn this task, with lower layers encoding the features and
upper layers performing ridge regression.

[Pathak et al., 2023] trained models on ICL with mixture noisy lin-
ear models, achieving performance nearly on par with optimal oracle
algorithm, despite having no access to the oracle information.

[Ahuja et al., 2023] trained models on ICL with various linear in-
verse problems, obtaining models that resemble penalty-based and
Bayesian approaches. They also show successful handling of mixed
problem types, echoing findings from [Yadlowsky et al., 2023].

5.1 Gradient descent

A large cluster of subsequent work focused on interpreting the trained
model as running varieties of gradient descent, or objections to this
interpretation. Most of the supporting work are detailed in the section
on theory.

The two papers that started this line of work are [Akyürek et al., 2023,
Von Oswald et al., 2023], which constructed transformers implement-
ing gradient descent and ridge regression, and found that trained mod-
els do agree with these algorithms. Low-capacity models would learn
gradient descent, and high-capacity, ridge regression. [Von Oswald et al., 2023]
also found that a learned model would in the early layers encode in-
coming tokens into a format amenable to GD, then performs GD in
the later layers of the Transformer.

[Cheng et al., 2024] showed transformers learn functional gradient
descent, enabling them to learn non-linear functions.

[Fu et al., 2023] objected that transformers learn a higher-order
optimization method, i.e. Iterative Newton’s Method.

[Ding et al., 2024] showed that T5-like transformers outperform
GPT-like autoregressive transformers, with the former converging to
optimal solutions while the latter converges to gradient descent.
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[Shen et al., 2024] found that, while transformers have the capacity
to simulate gradient descent for ICL, real-world models like GPT-3
exhibit different behavior on ICL tasks compared to models trained
specifically for ICL, bringing doubt to the practical relevance of the
toy model.

[Mahdavi et al., 2024] revisit the equivalence between ICL and gra-
dient descent, showing that strong assumptions like feature indepen-
dence are needed for exact equivalence and that under weaker assump-
tions, the process resembles preconditioned gradient descent.

5.2 Other mechanisms

Other than gradient descent and linear algebraic algorithms, there
were a few other proposed mechanisms. [Ren and Liu, 2023] proposed
contrastive learning, [Han et al., 2023] kernel regression, [Reddy, 2023]
induction heads, [Abernethy et al., 2023] sequence segmentation.

6 Theory

Most theoretical studies based on [Garg et al., 2022] has the following
kinds of contents:

1. Existence by construction: Write down the model parame-
ters to perform an algorithm like gradient descent.

2. Convergence proof: The model actually converges to a global
or local optimum.

3. Mechanistic interpretation: At the optimal point, the model
performs some known algorithm like preconditioned gradient de-
scent.

For theoretical tractability, most of them analyzed only a single
linear self-attention block trained by gradient flow. Most of them
verify their theorems experimentally. We note where they differed
from this. While one might doubt the realism of this simplification,
[Ahn et al., 2024b] empirically shows that such models trained for lin-
ear regression ICL reproduce most of the interesting phenomena ex-
hibited by a standard decoder-only transformer. On the other hand,
[Kim and Suzuki, 2024] highlight the role of feedforward layers in ex-
panding the range of learnable functions to the Barron space, enabling
greater flexibility in ICL.
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[Bai et al., 2023] constructed linear transformers for various statis-
tical algorithms, including least squares, ridge regression, LASSO, and
convex risk minimization. They also proved guarantees for expressive
power, prediction performance, and sample complexity.

[Ahn et al., 2024a] theoretically prove that linear transformers for
ICL linear regression implement forms of preconditioned gradient de-
scent, adapting to data distribution and variance.

[Lin and Lee, 2024] proved dual operating modes (learning and re-
trieval) in linear transformers, explaining phenomena like ”early as-
cent” and robustness to biased labels.

[Wu et al., 2024] proved a statistical task complexity bound, show-
ing that with only a few linearly independent linear regression tasks,
the trained model would perform close to Bayes optimal.

[Zhang et al., 2024a] proved convergence to a global minimum de-
spite non-convexity. At the optimum, the model is nearly Bayes opti-
mal estimator. [Zhang et al., 2024b] extended the convergence proof
to a linear self-attention block followed by a feedforward layer, and
that, the feedforward layer strictly improves the global optimum. At
the optimum, the model implements one-step gradient descent with
learnable initialization. [Zhang et al., 2023] explains the curve shape
of Figure 2 of [Garg et al., 2022].

[Vladymyrov et al., 2024] proved that, on noisy linear regression
ICL tasks with unknown noise variance, linear transformers learn a
gradient descent algorithm with noise-aware step-size adjustments and
rescaling based on noise levels.

[Chen et al., 2024] analyzed the training dynamics of multi-head
attention models for noisy multilinear regression, demonstrating con-
vergence to a local minimum and identifying distinct phases in the
learning process. Under another setting, [Huang et al., 2023] identi-
fied up to four distinct phases.

[Li et al., 2023a] analyzed the problem from the PAC learning per-
spective, proving that the trained transformers are stable ICL learners,
with provable generalization bounds to unseen tasks.

7 Empirical advances

Following up on the curriculum design work in [Garg et al., 2022],
[Bhasin et al., 2024] experimented with different curriculum strategies
across various function classes and statistical distributions, confirming
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its high efficiency.
Several papers tried different architectures than the autoregressive

decoder-only transformer. [Grazzi et al., 2024] tried Mamba; [Yang et al., 2024,
Gao et al., 2024] tried looped transformers.

[Li et al., 2023b] trained models to perform difficult ICL tasks,
where the function class is 6-layered MLP. This required sophisticated
CoT prompting.

There were several ablation studies. [Wibisono and Wang, 2023]
shuffled input-output pairings in the prompt, and found the softmax
layer was vital for ”unshuffling” the data internally, acting as a mixture
of experts. [Cui et al., 2024] found multi-headed attention superior to
single-headed attention, particularly with noisy labels, local examples,
and correlated features. [Xing et al., 2024] ablated components of the
transformer, and found it important to include two attention layers
with a look-ahead mask, positional encoding for connecting inputs and
outputs, multi-head attention and high embedding dimensions.

8 Others

Some papers do not fit into a story, yet engages with [Garg et al., 2022],
so we put all of them here.

[Garg, 2023] is the first author’s PhD thesis, and chapter 2 reprints
[Garg et al., 2022].

[Bhattamishra et al., 2023] studied ICL with boolean function classes.
They found that Transformers can nearly match the optimal learn-
ing algorithm for ‘simpler’ tasks, while their performance deteriorates
on more ‘complex’ tasks. They also studied in-context curriculum,
where simpler examples are presented earlier in the sequence. They
also found that transformers can learn to implement two distinct al-
gorithms to solve a single task, and can adaptively select the more
sample-efficient algorithm depending on the sequence of in-context
examples.

[Ahuja and Lopez-Paz, 2023] pointed out two different forms of
OOD. If x all appear in one orthant during training, but are unre-
stricted during testing, then we still have Prtesting(y|P ) = Prtraining(y|P )
for any prompt P , since we still do OLS in both cases. If x are noise-
less during training, but are noisy during testing, then we do not have
Prtesting(y|P ) = Prtraining(y|P ) for any prompt P , because we need
to do ridge regression in testing.
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[Sreenivasan, 2023] conducted theoretical and empirical studies on
various ICL techniques, including variants of Chain of Thought (CoT)
prompting, using [Garg et al., 2022]’s codebase and incorporating cur-
riculum learning strategies.
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[Akyürek et al., 2023] Akyürek, E., Schuurmans, D., Andreas, J., Ma,
T., and Zhou, D. (2023). What learning algorithm is in-context
learning? Investigations with linear models.

[Bai et al., 2023] Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S.
(2023). Transformers as Statisticians: Provable In-Context Learn-
ing with In-Context Algorithm Selection. Advances in Neural In-
formation Processing Systems, 36:57125–57211.

[Bhasin et al., 2024] Bhasin, H., Ossowski, T., Zhong, Y., and Hu,
J. (2024). How does Multi-Task Training Affect Transformer In-
Context Capabilities? Investigations with Function Classes.

[Bhattamishra et al., 2023] Bhattamishra, S., Patel, A., Blunsom, P.,
and Kanade, V. (2023). Understanding In-Context Learning in
Transformers and LLMs by Learning to Learn Discrete Functions.

9



[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
and Amodei, D. (2020). Language Models are Few-Shot Learners.

[Chan et al., 2022] Chan, S., Santoro, A., Lampinen, A., Wang, J.,
Singh, A., Richemond, P., McClelland, J., and Hill, F. (2022).
Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Sys-
tems, 35:18878–18891.

[Chen et al., 2024] Chen, S., Sheen, H., Wang, T., and Yang, Z.
(2024). Training Dynamics of Multi-Head Softmax Attention for
In-Context Learning: Emergence, Convergence, and Optimality.

[Cheng et al., 2024] Cheng, X., Chen, Y., and Sra, S. (2024). Trans-
formers Implement Functional Gradient Descent to Learn Non-
Linear Functions In Context.

[Cui et al., 2024] Cui, Y., Ren, J., He, P., Tang, J., and Xing, Y.
(2024). Superiority of Multi-Head Attention in In-Context Linear
Regression.

[Ding et al., 2024] Ding, N., Levinboim, T., Wu, J., Goodman, S.,
and Soricut, R. (2024). CausalLM is not optimal for in-context
learning.

[Fu et al., 2023] Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. (2023).
Transformers Learn Higher-Order Optimization Methods for In-
Context Learning: A Study with Linear Models.

[Gao et al., 2024] Gao, Y., Zheng, C., Xie, E., Shi, H., Hu, T., Li, Y.,
Ng, M. K., Li, Z., and Liu, Z. (2024). On the Expressive Power of
a Variant of the Looped Transformer.

[Garg, 2023] Garg, S. (2023). Nature of Learning and Learning of
Nature. PhD thesis, Stanford University, United States – California.

[Garg et al., 2022] Garg, S., Tsipras, D., Liang, P. S., and Valiant, G.
(2022). What can transformers learn in-context? a case study of
simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598.

[Grazzi et al., 2024] Grazzi, R., Siems, J., Schrodi, S., Brox, T., and
Hutter, F. (2024). Is Mamba Capable of In-Context Learning?

10



[Guo et al., 2023] Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C.,
Savarese, S., and Bai, Y. (2023). How Do Transformers Learn In-
Context Beyond Simple Functions? A Case Study on Learning with
Representations.

[Han et al., 2023] Han, C., Wang, Z., Zhao, H., and Ji, H. (2023).
Explaining Emergent In-Context Learning as Kernel Regression.

[Huang et al., 2023] Huang, Y., Cheng, Y., and Liang, Y. (2023). In-
Context Convergence of Transformers.

[Kim and Suzuki, 2024] Kim, J. and Suzuki, T. (2024). Transform-
ers Learn Nonlinear Features In Context: Nonconvex Mean-field
Dynamics on the Attention Landscape.

[Kojima et al., 2022] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y.,
and Iwasawa, Y. (2022). Large language models are zero-shot
reasoners. Advances in neural information processing systems,
35:22199–22213.

[Li et al., 2023a] Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak,
S. (2023a). Transformers as Algorithms: Generalization and Stabil-
ity in In-context Learning. In Proceedings of the 40th International
Conference on Machine Learning, pages 19565–19594. PMLR.

[Li et al., 2023b] Li, Y., Sreenivasan, K., Giannou, A., Papailiopou-
los, D., and Oymak, S. (2023b). Dissecting Chain-of-Thought:
Compositionality through In-Context Filtering and Learning.

[Lin and Lee, 2024] Lin, Z. and Lee, K. (2024). Dual Operating
Modes of In-Context Learning.

[Mahdavi et al., 2024] Mahdavi, S., Liao, R., and Thrampoulidis, C.
(2024). Revisiting the Equivalence of In-Context Learning and Gra-
dient Descent: The Impact of Data Distribution. In ICASSP 2024 -
2024 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7410–7414, Seoul, Korea, Republic
of. IEEE.

[Min et al., 2022a] Min, S., Lewis, M., Hajishirzi, H., and Zettle-
moyer, L. (2022a). Noisy Channel Language Model Prompting for
Few-Shot Text Classification.

[Min et al., 2022b] Min, S., Lyu, X., Holtzman, A., Artetxe, M.,
Lewis, M., Hajishirzi, H., and Zettlemoyer, L. (2022b). Rethink-
ing the Role of Demonstrations: What Makes In-Context Learning
Work?

11



[Panwar et al., 2023] Panwar, M., Ahuja, K., and Goyal, N. (2023).
Surprising Deviations from Bayesian View in In-Context Learning.
In I Can’t Believe It’s Not Better Workshop: Failure Modes in the
Age of Foundation Models.

[Panwar et al., 2024] Panwar, M., Ahuja, K., and Goyal, N. (2024).
In-Context Learning through the Bayesian Prism.

[Pathak et al., 2023] Pathak, R., Sen, R., Kong, W., and Das, A.
(2023). Transformers can optimally learn regression mixture mod-
els.

[Raventós et al., 2024] Raventós, A., Paul, M., Chen, F., and Gan-
guli, S. (2024). Pretraining task diversity and the emergence of
non-Bayesian in-context learning for regression. Advances in Neu-
ral Information Processing Systems, 36.

[Reddy, 2023] Reddy, G. (2023). The mechanistic basis of data de-
pendence and abrupt learning in an in-context classification task.

[Ren and Liu, 2023] Ren, R. and Liu, Y. (2023). In-context Learning
with Transformer Is Really Equivalent to a Contrastive Learning
Pattern.

[Shen et al., 2024] Shen, L., Mishra, A., and Khashabi, D. (2024).
Revisiting the Hypothesis: Do pretrained Transformers Learn In-
Context by Gradient Descent?

[Sreenivasan, 2023] Sreenivasan, K. (2023). Towards Understanding
the Challenges in Scaling Frontier Machine Learning Models. The
University of Wisconsin-Madison.

[Vladymyrov et al., 2024] Vladymyrov, M., von Oswald, J., Sandler,
M., and Ge, R. (2024). Linear Transformers are Versatile In-Context
Learners.

[Von Oswald et al., 2023] Von Oswald, J., Niklasson, E., Randazzo,
E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and Vladymy-
rov, M. (2023). Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pages 35151–
35174. PMLR.

[Wei et al., 2022] Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu,
A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V. (2022). Fine-
tuned Language Models Are Zero-Shot Learners.

[Wibisono and Wang, 2023] Wibisono, K. C. and Wang, Y. (2023).
On the Role of Unstructured Training Data in Transformers’ In-

12



Context Learning Capabilities. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning.

[Wu et al., 2024] Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q.,
and Bartlett, P. L. (2024). HowMany Pretraining Tasks Are Needed
for In-Context Learning of Linear Regression?

[Xie et al., 2022] Xie, S. M., Raghunathan, A., Liang, P., and Ma, T.
(2022). An Explanation of In-context Learning as Implicit Bayesian
Inference.

[Xing et al., 2024] Xing, Y., Lin, X., Suh, N., Song, Q., and Cheng,
G. (2024). Benefits of Transformer: In-Context Learning in Linear
Regression Tasks with Unstructured Data.

[Yadlowsky et al., 2023] Yadlowsky, S., Doshi, L., and Tripuraneni,
N. (2023). Pretraining Data Mixtures Enable Narrow Model Selec-
tion Capabilities in Transformer Models.

[Yang et al., 2024] Yang, L., Lee, K., Nowak, R., and Papailiopoulos,
D. (2024). Looped Transformers are Better at Learning Learning
Algorithms.

[Zhang et al., 2024a] Zhang, R., Frei, S., and Bartlett, P. L. (2024a).
Trained Transformers Learn Linear Models In-Context. Journal of
Machine Learning Research, 25(49):1–55.

[Zhang et al., 2024b] Zhang, R., Wu, J., and Bartlett, P. L. (2024b).
In-Context Learning of a Linear Transformer Block: Benefits of the
MLP Component and One-Step GD Initialization.

[Zhang et al., 2023] Zhang, Y., Zhang, F., Yang, Z., and Wang, Z.
(2023). What and How does In-Context Learning Learn? Bayesian
Model Averaging, Parameterization, and Generalization.

13



A Tips for using LLM for literature

review

You might need to correct for two biases of most LLM nowadays: the
sensibility bias and the agreeing bias.

The sensibility bias is when it tends to find a moral to every
episode, an uplifting message to every episode, a worthwhile data point
to every paper. Some papers are just garbage, and some episodes are
nonsense. This is bad because it means it tends to embellish the review
with empty nonsense. I correct for this by

You are a literature reviewer for a machine learning journal.
You are precise, informative, and neutral in tone. Don’t
be optimistic nor pessimistic. Simply inform, and don’t
attempt to tell a satisfying story. Don’t apologize. Don’t
be polite, courteous, impolite, or verbose. Just perform the
task.

The agreeing bias is when it tends to find something to agree to
in every opinion. By default, if I ask whether a paper is relevant to
Garg et al, it always finds a way to say yes. I correct for this by

Be discriminating: If the work is only tangentially related,
such that the work is not relevant for subsequent work that
builds upon Garg et al, then reply ”NO RELATION”.

You know that you are too eager to see relations where
there are not, and if you realize that there really is no
relation, you will stop the reply with ”NO RELATION”,
even when you are halfway through a reply.
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