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Abstract

This paper summarizes the basics concepts of information geome-
try, and gives as example applications, Jeffreys prior in Bayesian prob-
ability, and natural gradient descent in machine learning. Necessary
concepts in probability and statistics are explained in detail.

The main purpose of the paper is to provide, for people familiar
with differential geometry, an accessible overview and entry point into
information geometry. No originality is claimed in content.

1 Introduction

Information geometry applies methods of differential geometry to problems
in statistics, probability theory, data analysis, and many other related fields.
Despite its wide reach, and , it is not as well-known or well-understood as it
should. This is probably due to a lack of accessible introductions.

This paper aims to provide such an introduction. The intended audi-
ence has a good symbolic and intuitive understanding of modern differential
geometry, but merely symbolic understanding of probability, statistics, and
machine learning. As such, all such concepts used in the paper are explained
in detail, from the bare basics, while the differential geometry is written in
ruthless telegraphic style.

Standard references of information geometry are [Amari and Nagaoka, 2007]
and [Amari, 2016].

We use Einstein summation throughout the paper.

2 Probability concepts

In this section, we define some probability concepts we will use in the paper.
See [Cover and Thomas, 2006, chapter 2] for a detailed exposition.

We consider a probability space (Ω,B, P ), where Ω is the state space, and
P is the probability measure on the measure space (Ω,B). The probability
space is either discrete or continuous, depending on the context. If it is
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discrete, we use the notation Ω = {0, 1, · · · }, and Pi = P ({i}). If it is
continuous, we assume that the probability measure has a density p : Ω →
[0,∞), so that any measurable subset A ⊂ Ω, P (A) =

∫
A
p(x)dx.

In information theory, the entropy of a random variable quantifies the
amount of randomness in a random variable.

Definition 2.1. The entropy of a discrete random variable P is

H(P ) = −
∑
i

Pi lnPi. (1)

For a continuous random variable, we can define an analogous quantity
on its probability density:

Definition 2.2. The differential entropy or continuous entropy of a
probability density p is

h(p) = −
∫

Ω

p(x) ln p(x)dx. (2)

One should be cautious to note that the differential entropy is not defined
for the random variable P itself, but for its probability density p. Consider
for instance the uniform random variable on [0, 1]. Its probability density
function is p(x) = 1. So we have h(p) = 0. However, we could trivially
transform the random variable by stretching its state space to [0, k], then we
have transformed probability density p(x) = 1

k
, h(p) = ln k which could be

negative. In contrast, the entropy of a discrete random variable is always
nonnegative.

Philosophically, in probability theory, one is interested in the random
variable itself, rather than its presentation. As such, if a quantity, such as
the differential entropy, depends on how the random variable is presented,
then it is not a concept in probability, but rather, a concept in mathematical
analysis.

When there are two random variables P,Q, we can measure their differ-
ence by

Definition 2.3. The relative entropy or Kullback–Leibler divergence
between two probability densities p, q is

D(p‖q) =

∫
Ω

p(x) ln
p(x)

q(x)
dx. (3)

When both random variables are discrete, this reduces to

D(P‖Q) =
∑
i

Pi ln
Pi
Qi

. (4)
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It can be proven that the Kullback–Leibler divergence is always nonneg-
ative, and is zero iff p = q. This result is called the Gibbs inequality. It
also does not depend on the presentation of P,Q, that is, under a change of
state space f : Ω → Ω′, p, q are changed to p′, q′, but as long as f does not
“lose information”,

D(p‖q) = D(p′‖q′).

Note that this is not a distance, since in general, D(p‖q) 6= D(q‖p), and
it also does not satisfy the triangle inequality. This is why it’s called a
“divergence”.

3 Defining the information manifold

For this section, we follow [Caticha, 2015], and [Leinster, 2018].
Now we consider a family of probability densities {pθ|θ = (θ1, · · · , θn) ∈

M}, where θ is usually called the parameter of the family, and M is an
open submanifold of Rn. This M is the information manifold, or sta-
tistical manifold. In general, an information manifold can be constructed
by multiple parametrizations, each parametrization by θ being one chart of
the manifold. We will have no need for such generality however, and would
develop the theory as if M is covered by one chart. We will also assume that
p(x|θ) is smooth in θ.

In this view, we immediately see that the continuous entropy function h
is a scalar function on the manifold. Differentiating under the integral sign
shows that h ∈ C∞(M).

We would endow it with a Riemannian metric that measures the distance
between infinitesimally close probability densities p(x|θ) and p(x|θ + dθ).

Example 3.1. Consider the family of normal distribution on the real line.
Then each is characterized by its mean µ and variance σ2, with (µ, σ2) ∈
R× (0,∞), and

p(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5)

The Kullback–Leibler divergence between two points on an information
manifold is an instance of a general concept, divergence, which can be thought
of as an asymmetric generalization of distance.

Definition 3.1. The divergence on a manifold M is some function D(·‖·) :
M ×M → [0,∞), such that D(q‖p) = 0 iff p = q, and in any local chart θ,
we have

D(θ + dθ‖θ) =
1

2
gijdθ

idθj + o(|dθ|2) (6)
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for some positive definite matrix [gij].

A divergence has an associated Riemannian metric gij as given in the
definition.

3.1 Metric via distinguishability

Consider the relative difference of p(x|θ) and p(x|θ + dθ):

∆θ(dθ) =
p(x|θ)− p(x|θ + dθ)

p(x|θ)
=
∂ ln p(x|θ)

∂θi
dθi (7)

We can interpret this as how distinguishable the two densities are, if all we
have are their values at a particular x ∈ Ω. If it is zero, then they appear
the same. The bigger its absolute value is, the more they differ.

We define convenient notation pθ(x) = p(x|θ) and the log-density function
lθ(x) = l(x|θ) = ln p(x|θ).

Fixing a parameter θ ∈M and an infinitesimal variation dθ, the expected
value of ∆θ(dθ) is

Eθ[∆θ(dθ)] =

∫
Ω

∆θ(dθ)dx =

∫
Ω

(pθ+dθ(x)− pθ(x))dx = 0 (8)

which is unfortunate. The square, however, is nontrivial:

Eθ[∆θ(dθ)
2] =

(∫
Ω

pθ(x)
∂ ln pθ(x)

∂θi
∂ ln pθ(x)

∂θj
dx

)
dθidθj (9)

This allows us to define a metric on M .

Definition 3.2. The Fisher information metric on M is defined by

gij(θ) = Eθ [∂il∂jl] . (10)

Note that we always take partial derivatives over the parameters θ unless
otherwise specified, so ∂il is partial derivative by θi.

It’s easy to verify that gij is a symmetric (2, 0)-tensor (check that it
transforms covariantly under a coordinate change θ 7→ θ′). It remains to
show that it’s positive-definite, that is, for all dθ, gijdθ

idθj ≥ 0, with equality
hold iff dθ = 0.

From definition, gijdθ
idθj = 〈∆θ(dθ)

2〉 is the expected value of a nonneg-
ative number, so gijdθ

idθj ≥ 0. If it equals zero, then we have ∆θ(dθ)
2 = 0

almost surely, that is, pθ+dθ(x)−pθ(x)

pθ(x)
= 0 almost surely. So pθ+dθ(x) = pθ(x)

almost surely.
We thus assume that the manifold coordinates are regular, that is, the

Fisher metric is positive-definite in that coordinate.
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3.2 Metric via Kullback–Leibler divergence

Consider the Kullback–Leibler divergence of two densities p, q:

D(p‖q) =

∫
Ω

p(x) ln
p(x)

q(x)
dx = −

∫
Ω

p(x) ln

(
1 +

q(x)− p(x)

p(x)

)
dx

expand in Taylor series to second order,

≈
∫

Ω

(p(x)− q(x)) +
1

2

(p(x)− q(x))2

p(x)
dx. (11)

The linear term integrates to zero, since
∫

Ω
p(x)dx =

∫
Ω
q(x)dx = 1, so

D(p‖q) ≈ 1

2

∫
Ω

(
p(x)− q(x)

p(x)

)2

p(x)dx. (12)

Now let p = pθ+dθ, q = pθ, we have

D(pθ+dθ‖pθ) ≈
1

2

〈
∆θ(dθ)

2
〉

=
1

2
gijdθ

idθj. (13)

deriving the Fisher metric as the Kullback–Leibler divergence between in-
finitesimally close points on the information manifold, that is, it is the asso-
ciated Riemann metric of Kullback–Leibler divergence.

We can recast this in another form. Start with

D(pθ+dθ‖pθ) =
1

2
gij(θ)dθ

idθj ≈ 1

2
gij(θ + dθ)dθidθj = D(pθ‖pθ+dθ)

and perform Taylor expansion again, up to second order:

ln pθ+dθ(x) ≈ ln pθ(x) + sθ · dθ +
1

2
(∂i∂jl) dθ

idθj

where sθ = ∇θlθ is usually called the score function.
So

1

2
gijdθ

idθj = D(pθ‖pθ+dθ)

=

∫
Ω

p(x|θ) (ln p(x|θ)− ln p(x|θ + dθ)) dx

≈ − Eθ
[
sθ · dθ +

1

2
(∂i∂jl) dθ

idθj
]

= − 1

2
Eθ[∂i∂jl]dθidθj

(14)
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where we used the fact that the expectation of score is zero:

Eθ[sθ] =

∫
Ω

pθ(x)
∇θpθ(x)

pθ(x)
dx = ∇θ

∫
Ω

pθ(x)dx = 0 (15)

So we obtain
gij = −Eθ[∂i∂jl]. (16)

3.3 Uniqueness of the Fisher metric

The Fisher metric has many derivations, and is in some sense the unique (up
to a constant factor) Riemannian metric on the information manifold that
is compatible with the probability distributions pθ. More precisely, consider
the idea of doing a transformation of the underlying state space Ω. Then
this transforms the probability distributions pθ too. If the transformation
of state space is “lossy”, that is, some different states are sent to the same
states, then information is lost, otherwise, information is preserved. This can
be formalized by the concept of sufficient statistic transform.

Now consider a divergence D and two points on the information manifold
pθ, pδ. After a change of state space, the two points are transformed too, into
some p′θ, p

′
δ. If the change of state space is lossy, then we expect that the

difference between the two distributions would become blurred, that is, they
look more similar. Otherwise, we expect their difference to look the same.

That is, we expect
D(pθ‖pδ) ≥ D(p′θ‖p′δ) (17)

where equality holds iff the transform is a sufficient statistic transform. This
property of divergence D is called information monotonicity.

Then, we can show that any divergence that satisfies information mono-
tonicity induces the Fisher metric. This was proved by Chentsov in 1972.
For a detailed proof, see [Amari, 2016, chapter 3].

3.4 Examples

3.4.1 Normal distribution

Consider the one-dimensional normal distribution p(x|µ, σ2) defined in Ex-
ample 3.1, then the Fisher metric on the upper half plane (µ, σ2) ∈ R×(0,∞)
makes it into the Poincaré half-plane model (with a horizontal stretching).
The geodesics are upper-half elliptic arcs or verticle half-lines, and given any
two normal distributions, one can connect them with a geodesic line segment
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and interpolate between them using the arc length as a parameter. This in-
terpolation by arc length is in some sense natural, even though its practical
significance is unclear.

For a detailed calculation and some pictures, see [Costa et al., 2015].

3.4.2 Jeffreys prior

In Bayes statistics, one always starts with an assumption on the random
events one wishes to study. For example, before one investigates a coin’s
flips, one must make an assumption on its behavior.

As usual, assume the coin has no memory, and has chance θ ∈ (0, 1) of
coming up heads. One must make one further assumption on the probability
distribution of θ on (0, 1). This is the all-important prior distribution. After
choosing the prior, one performs experiments, and after that, uses Bayes
theorem to update the prior into a posterior.

In general, one is faced with the problem of determining a good prior
before one starts the experiment. It must be in some sense be completely
non-informative, so that it reflects the experimenter’s maximal ignorance.

Given the Fisher metric on the information manifold, we can define the
associated volume density

√
| det(g)| on the manifold. Since the Fisher metric

is in some sense uniquely defined on the manifold, the volume density is also
uniquely defined. This has led Jeffreys [Jeffreys, 1946] to propose it as a
useful non-informative prior in Bayesian probability. This prior is called the
Jeffreys prior.

For example, in our coin-flip experiment, we have

p(T |θ) = 1− θ, p(H|θ) = θ (18)

giving the Fisher metric

gθθ(θ) = Eθ[∂θl∂θl] = (1− θ)
(
− 1

1− θ

)2

+ θ

(
1

θ

)2

=
1

θ(1− θ)
(19)

and the Jeffreys prior

ρ(θ) =
1√

θ(1− θ)
. (20)

Intuitively, Jeffreys prior gives higher weight to regions on the informa-
tion manifold with more distinguishability. In our coin-flip example, the
prior is heavily weighted on the two extreme ends, which can be intuitively
understood thus: whereas two coins with θ = 0.4, 0.5 are quite similar, two
coins with θ = 0.001, 0.101 are very different, with one almost never coming
up heads, the other once in a while. This shows that distinguishability is
concentrated on the extreme ends.
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4 Connections on the information manifold

Now we define families of connections on the information manifold. For this
section we follow [Amari, 2016, chapter 6] and [Nielsen, 2018].

4.1 Levi-Civita connection

We set up the notation quickly. For details, refer to [Lee, 2018].
Consider a general smooth manifold M with a local coordinate chart

(x1, · · ·xn) around p ∈ M . Any connection on that region is defined by n3

smooth functions Γkij, so that the covariant derivative induced by the con-
nection gives ∇∂i∂j = Γkij∂k. The connection is symmetric or torsionfree
iff for any vector fields X, Y ,

∇XY −∇YX − [X, Y ] = 0. (21)

In coordinates,
Γkij = Γkji. (22)

Suppose M has Riemannian metric g, then we define

Γijk = Γlijglk = 〈∇∂i∂j, ∂k〉 (23)

Take inner products of the two vector fields X, Y as a scalar field 〈X, Y 〉 ∈
C∞(M). Then take another vector field Z, we can differentiate the scalar
field along the vector field:

Z 〈X, Y 〉 = ∇Z 〈X, Y 〉 . (24)

The connection ∇ preserves the metric g iff we have a “product rule”:

∇Z 〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉 (25)

In coordinates,
∂kgij = Γkij + Γkji (26)

The Levi-Civita connection or Riemannian connection on M is
the unique connection such that is symmetric and preserves the metric. In
coordinates, we have

Γijk =
1

2
(∂igjk + ∂jgik − ∂kgij) (27)
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4.2 Dual connection

We can generalize the concept of a metric-preserving connection by consid-
ering two connections ∇, ∇̃, such that a generalized form of Equation 25
holds:

Z 〈X, Y 〉 = 〈∇ZX, Y 〉+
〈
X, ∇̃ZY

〉
(28)

In coordinates,
∂igjk = Γijk + Γ̃ikj (29)

which shows that each connection has a unique dual connection.

Definition 4.1. Two connections are dual connections with respect to g
iff Equation 28 holds for any smooth vector fields X, Y, Z.

Definition 4.2. A dual manifold is a Riemannian manifold equipped with
a pair of dual connections (M, g,∇, ∇̃).

Note that since the metric is symmetric: 〈X, Y 〉 = 〈Y, Y 〉, duality is also
symmetric, that is, if Equation 28 holds, then we also have

Z 〈X, Y 〉 =
〈
∇̃ZX, Y

〉
+ 〈X,∇ZY 〉

Just as Levi-Civita connection preserves the inner product of vectors par-
allelly transported along any path, we have an analogous result:

Theorem 4.1. Given dual connections ∇, ∇̃, and two vectors X(t), Y (t) that
are respectively parallel-transported by ∇, ∇̃ along a path γ(t) : I →M , then
their inner product is constant along the path.

Proof

d

dt
〈X(t), Y (t)〉 = γ̇(t) 〈X(t), Y (t)〉

=
〈
∇γ̇(t)X(t), Y (t)

〉
+
〈
X(t), ∇̃γ̇(t)Y (t)

〉
= 〈0, Y (t)〉+ 〈X(t), 0〉

Now we consider curvatures on dual manifolds.

Definition 4.3. A connection ∇ is flat iff its Riemann curvature tensor is
zero.
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Recall that the Riemann curvature tensor is defined by

R∇(X, Y, Z,W ) =
〈
(∇X∇Y −∇Y∇X −∇[X,Y ])Z,W

〉
(30)

Then we can expand out, using Equation 28,

0 = (XY − Y X − [X, Y ]) 〈Z,W 〉 = R∇(X, Y, Z,W ) +R∇̃(X, Y,W,Z)

Recall the sectional curvature tensor is defined by

K∇(X, Y ) = R∇(X, Y,X, Y ) (31)

Then, by antisymmetry of the Riemann curvature tensor in the first two
inputs,

R∇(X, Y,X, Y ) = −R∇̃(X, Y, Y,X) = R∇̃(Y,X, Y,X)

So we have the “fundamental theorem of information geometry”:

Theorem 4.2. Given dual manifold (M, g,∇, ∇̃), the Riemann curvature
tensors of the dual connections satisfy

R∇(X, Y, Z,W ) +R∇̃(X, Y,W,Z) = 0 (32)

and their sectional curvature tensors satisfy

K∇(X, Y ) = K∇̃(Y,X) (33)

In particular, if one of the dual connections have constant sectional curvature
K, so does the other, and if one of them is flat, so does the other.

Note that if ∇ = ∇̃, that is, ∇ preserves the metric g, then this means
R∇ is antisymmetric in its last two inputs, which is a standard result in
Riemannian geometry, see for example [Lee, 2018, Proposition 7.12 (b)].

Definition 4.4. A dual manifold is flat iff one of its connections is flat, which
means, in light of Theorem 4.2, iff both of its connections are flat.

Given a pair of dual connections, their average preserves the metric:

Z 〈X, Y 〉 =

〈(
∇+ ∇̃

2

)
Z

X, Y

〉
+

〈
X,

(
∇+ ∇̃

2

)
Z

Y

〉
and if both connections are symmetric, their average is also symmetric, so it
is the Levi-Civita connection.

We define a linear space of connections on a dual manifold by
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Definition 4.5. Given dual manifold (M, g,∇, ∇̃), for all α ∈ R, the asso-
ciated α-connection is

∇(α) =
1 + α

2
∇+

1− α
2
∇̃ (34)

So ∇(1) = ∇,∇(−1) = ∇̃.
The connection coefficients of the α-connection are

Γ
(α)
ijk = Γ

(0)
ijk −

α

2
Tijk (35)

We will restrict our attention to dual manifolds with symmetric connec-
tions, so that ∇(0) is the Levi-Civita connection.

4.3 Cubic tensor

While the connection coefficients Γijk are not tensors, the difference between
any two is, so

Definition 4.6. The cubic tensor or Amari–Chentsov tensor of a dual
manifold with symmetric connections (M, g,∇, ∇̃) is

Tijk = Γ̃ijk − Γijk (36)

Or, in coordinate-free notation, for any vector fields X, Y, Z,

T (X, Y, Z) =
〈
∇XY − ∇̃XY, Z

〉
(37)

Theorem 4.3. The cubic tensor is symmetric, and in coordinates,

∇∂igjk = Tijk (38)

Proof By Equation 29, 36,

∂igjk = (Γijk + Γikj) + Tikj

So
Tikj = ∂igjk − (Γijk + Γikj) = ∇∂igjk

So Tikj = Tijk. Also, by Equation 36, since ∇, ∇̃ are symmetric, Tijk is
symmetric in i, j, so T is totally symmetric.

Theorem 4.4. For all α ∈ R, ∇(α),∇(−α) are dual.

Proof By Equation 35 and symmetry of T ,

Γ
(α)
ijk + Γ

(−α)
ikj = Γ

(0)
ijk + Γ

(0)
ikj = ∂igjk
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4.4 Divergence derives dual connections

Now we derive a metric and a pair of dual connections on any manifold M
with a divergence D. This would then be applied to the information manifold
with Kullback–Leibler divergence as the divergence, giving the Fisher metric
and the dual connections on the information manifold.

First, we define some convenient notations:

∂i,· =
∂

∂θi
, ∂·,j =

∂

∂θ′j
(39)

Then recall that the divergence D, when written in local coordinates θ, has
the form

D(θ + dθ‖θ + dθ′) =
1

2
gij(θ)(dθ

i − dθ′i)(dθj − dθ′j) + o(|dθ − dθ′|2) (40)

for infinitesimal dθ, dθ′, so we have

gij(θ) = −∂i,jD(θ‖θ′)|θ=θ′ (41)

So far this is nothing new. But now we can define the dual connections

Γijk = −∂k,ijD(θ‖θ′)|θ=θ′
Γ̃ijk = −∂ij,kD(θ‖θ′)|θ=θ′

(42)

Theorem 4.5. The pair of connections defined by Equation 42 are dual with
respect to the metric g.

Proof Let gij(θ‖θ′) = −∂i,jD(θ‖θ′), so that

gij(θ) = gij(θ‖θ)

Then we have

∂kgij(θ) = ∂kgij(θ‖θ) = (∂k,· + ∂·,k)(gij(θ‖θ′))|θ=θ′ = Γkij(θ) + Γ̃kji(θ)

4.5 Examples of dual connections

Now, for the particular case of M being the information manifold, and D
being the Kullback–Leibler divergence, direct calculation gives

Γijk = Eθ[∂kl∂ijl]
Γ̃ijk = Eθ[∂kl(∂il∂jl + ∂ijl)]

Tijk = Eθ[∂il∂jl∂kl]
(43)
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From this, we can obtain the family of ∇(α)-connections, as defined in
Equation 34. It turns out that they can all be derived by divergences, called
α-divergences. To define it, we first define the f -divergence:

Df (p‖q) =

∫
Ω

q(x)f

(
p(x)

q(x)

)
dx (44)

where f is convex, and f(1) = 0.
Then, the α-divergences are defined by

f(t) =


4

1−α2 (1− t(1+α)/2), if α 6= ±1

t ln t, if α = 1

− ln t, if α = −1

(45)

Direct computation shows that the α-connections are really induces by them.

5 Two important statistical families

Now we consider two important statistical families: the exponential and the
mixture families. They are especially important in information geometry as
the prototypical information manifolds, just as the Euclidean space is the
prototypical manifold in differential geometry.

5.1 Mixture family

Consider two coins with different probabilities of coming up heads, so that
their probability distributions can be modelled as p1, p2, with p1(H) = 0.55, p1(T ) =
0.45, for example.

Then we can “mix” the two coins by using a third coin, which has a
probability of θ of coming up heads. Then, we can mix the two coins by this
procedure:

(1) Flip the third coin.

(2) If it comes up heads, choose the first coin, else, choose the second coin.

(3) Flip the chosen coin and use the result.

Then the probability distribution of the outcome is

θp1 + (1− θ)p2 = θ(p1 − p2) + p2 (46)

This kind of mixing can be generalized to the concept of

13



Definition 5.1. A mixture family is a statistical family parametrized by
θ ∈ Θ where Θ is some open subset of Rn, such that its distributions are

pθ(x) = θiFi(x) + C(x) (47)

where ∫
Ω

Fi(x)dx = 0

∫
Ω

C(x)dx = 1

and Fi are linearly independent with some common support.

By direct calculation,
Γ̃ijk = 0

for mixture families. So, for a mixture family defined by Equation 47, the
parameters θ are affine parameters for the connection ∇̃ on the information
manifold, and so the ∇̃-geodesics are of the form

γ(t) = pθt+θ′(1−t), t ∈ (a, b) ⊂ R (48)

That is, they are the linear mixtures between two probability distributions.

5.2 Exponential family

Whereas the mixture family comes from linear sums, the exponential family
comes from “linear products”, that is, linear sums of logarithms.

Definition 5.2. An exponential family is a statistical family parametrized
by θ ∈ Θ where Θ is some open subset of Rn, such that its distributions are

pθ(x) = exp
(
C(x) + θiFi(x)− φ(θ)

)
(49)

where Fi are linearly independent with some common support, and φ is a
normalization function defined such that

∫
Ω
pθ(x)dx = 1 for all θ.

One might motivate considering “linear products” by considering what
happens when one attempts to combine the two previously mentioned coins
“in disjoint product” instead of “in disjoint sum”. That is, one throws both
of them together and considers all four possible outcomes HH,HT, TH, TT .
Then, the probability of this mixture of coins would be of the form

p(HH) = p1(H)p2(H), p(HT ) = p1(H)p2(T ), · · ·

That is, p = p1p2. One can then generalize this to “fractional mixtures” like

p = Cpθ
1

1 p
θ2

2 p
θ3

3 · · ·
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where C is a normalization constant. Then this leads directly to the definition
of the exponential family.

Exponential families are very prevalent in statistics. Statistical models
that can be written in the form of exponential families include Gaussian
distributions, gamma distributions, beta distributions, etc.

Basically, any statistical model where we are considering a “product”
mixture of several pure distributions, we would be considering exponential
families. Contrast this with a “sum” mixture, where we don’t know which
distribution we would be drawing from, but we know that it’s one of the pure
ones. This gives a mixture family.

By taking the gradient of
∫

Ω
pθ(x)dx = 1, we get

∂iφ = Eθ[Fi] (50)

If we combine the Fi into a vector F = (F1, · · ·Fn), then we get the more
suggestive form

∇φ = Eθ[F] (51)

Taking gradient again, we get the hessian

∇2φ = Varθ[F] (52)

We can calculate the Christoffel symbols of ∇ in θ coordinates,

Γijk = Eθ[(Fk − ∂kφ)∂ijφ] = (Eθ[Fk]− ∂kφ)∂ijφ = 0

Thus, just as the case of mixture families, the information manifold is flat,
and θ provide an affine parametrization relative to the ∇-connection. The
∇-geodesics look like straight lines when drawn in θ parameters.

5.3 Notation: e- and m- prefixes

In the case of exponential families, Γ = 0, so the lines are ∇-geodesics. In
the case of mixture families, Γ̃ = 0, so the lines are ∇̃-geodesics. Thus, in the
context of information geometry, for any dual manifold (M, g,∇, ∇̃), even if
it’s not the information manifold of an exponential or mixture family, the ∇
connection is still often called the e-connection, and ∇̃, the m-connection;
the ∇-geodesics are called e-geodesics, and ∇̃-geodesics, m-geodesics.

If the dual manifold is flat, then one can find a coordinate θ on it such
that Γ = 0 in these coordinates, and the coordinate system would be called
a set of e-affine parameters. Similarly for m-affine parameters.
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6 Application to machine learning

Information geometry has many applications. Here we will only discuss its
basic application to machine learning. Many applications can be found in
[Amari, 2016].

6.1 Learning as optimization on manifolds

In machine learning, such as deep learning, one starts with a statistical model
with various parameters and some training data, and adjusts the parameters
during a training process, so that the model fits the training data.

Formally, consider the problem of learning a function of form f(xxx) = y.
The problem is to learn a function fθ that approximates f using some training
data {(xxxi, yi)|i = 1, · · ·N}.

First, we turn the problem into a statistical problem. f : Rn → R is
specified by a subset of Rn×R, and we turn it into a probability distribution
on Rn×R. This can be accomplished by, for example, imposing a probability
distribution pxxx on xxx, and adding a noise ε to y, so that y = f(xxx) + ε. Then,
the joint probability distribution is

p(xxx, y) = pxxx(xxx)pε(y − f(xxx)) (53)

where pε is the probability distribution that the noise satisfies.
Then, the training data is drawn from the distribution, and the problem is

to learn the best θ from the training data, such that fθ closely approximates
f .

To measure the closeness, one introduces a loss function l(xxx, y, θ) to
represent how bad the mistake is, if we use fθ and encounter a sample (xxx, y).
The most commonly used loss function is the squared error:

l(xxx, y, θ) = (y − fθ(xxx))2 (54)

The goal is to minimize expected loss:

L(θ) = E(xxx,y)∼p[l(xxx, y, θ)] (55)

Now, fix the distribution p of (xxx, y), we can view the loss function as a
random variable parametrized by θ. Thus, we obtain an information manifold
M parametrized by θ. The expected loss L is a scalar function on M , and is
usually smooth. Thus, the problem reduces to minimizing a scalar function
on a Riemannian manifold.
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6.2 The natural gradient method

The standard method for finding a minimum is the gradient descent method.
Let

∇L = (∂iL)i (56)

be an n-tuple function defined on M . This is often mistakenly called a
“vector”, but it is not a vector on M . The ∇ symbol is not a connection,
either. It is simply a notation inherited from its use in vector calculus in
Euclidean space.

Anyway, ∇L points to the direction where L increases, so if we go against
it, we decrease L. The gradient descent method is defined by

θt+1 = θt − αt∇L(θt) (57)

where αt is the learning rate parameter, and usually is set to decrease to
zero as t increases.

In practice, one uses the stochastic gradient descent, which is ex-
plained in any machine learning textbook.

As warned, the problem with ∇L is that it is not a vector on M , and is
thus unnatural. In order to do gradient descent naturally, one starts with
dL : TM → R, then use the metric to map this 1-form to a vector field, via
a musical isomorphism:

∇NL = (dL)], dL = 〈∇NL, ·〉 (58)

In matrix notation, practical for machine learning,

[∇NL] = [g]−1[∇L] (59)

where [g] is the Fisher information matrix.
One step of natural gradient descent with learning rate α is a step that

minimizes the expected loss L, under the constraint that the step must have
Kullback–Leibler divergence approximately equal to 1

2
α2. This forces the

update to be of substance. Under unnatural gradient descent, there is no
guarantee on the Kullback–Leibler divergence of the step, thus no guarantee
that the update has substance.

Compared to the more popular method of stochastic gradient descent,
in general, natural gradient descent converges in fewer steps, but each step
takes more time. As of current writing, stochastic gradient descent is still
the dominant method in practical machine learning.
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6.3 Other natural methods

There are other similar “natural” methods, such as natural Newton method,
natural conjugate gradient descent, natural policy descent for reinforcement
learning, etc. These are methods of Riemannian optimization, which are
developed theoretically and numerically in [Absil et al., 2009].

Compared to more “unnatural” (ungeometrical) methods, natural meth-
ods all share the general theme of being (approximately) unaffected by a
change of parameters, more likely to converge, converging in fewer steps, but
each step being harder to numerically approximate. As a result, they do not
dominate over unnatural methods in practical machine learning.

6.4 Singularities on the information manifold

Throughout this paper, we have always treated the information manifold
as a Riemannian manifold, but this can fail when the metric stops being
positive-definite, but merely positive-semidefinite. This happens when the
Fisher information matrix becomes singular.

Singularities are unavoidable in practical machine learning. For example,
consider the artificial neural network (in particular, it is a multilayer
perceptron network) shown in Figure 1.

Artificial neural networks are inspired by biological neural networks. A
single neuron i is modelled as a cell with n inputs x1, · · ·xn, and 1 output yi.
The inputs are weighted by neural connection strengths wi1, · · ·win, and
the cell outputs according to an activation function φ : R → R, so that
yi = φ(wwwi · xxx).

Then, all the cells’ outputs are weighted and summed to give the final
output y =

∑m
i=1 viyi

Figure 1: A multilayer perceptron network with one hidden layer. Figure
taken from [Amari, 2016, Fig. 12.4].
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All together, the network is a graphical representation of a function fθ,
defined by

fθ(xxx) =
m∑
i

viφ(wwwi · xxx), θ = (www1, · · ·wwwm; v1, · · · vm) (60)

Here, θ is a tuple of the neural connection strengths. All boldfaced letters
are n-tuples from Rn.

Permutating the neurons in the hidden layer would not change the net-
work’s input-output behavior, so we obtain the same probability distribution
for multiple parameters. We can imagine quotienting out these equivalent
networks as M = M/ ∼. This produces a neuromanifold, which unfortu-
nately is not a smooth manifold, as it has singularities.

The symmetry of neural networks with respect to permutating its hidden
neurons, in particular, creates a singularity on the neuromanifold: the image
of the neural networks that are completely unchanged by exchanging two
hidden neurons. To see why, consider a toy example. M = R2, and (x, y) ∼
(x′, y′) iff x = y′, y = x′, that is, the two points are symmetric across the
diagonal line x = y. Then M/ ∼ is a half-plane with a line of singularities:
the image of the diagonal line.

Singularities are problematic in practice, where natural gradient descent
fails, and stochastic gradient descent often plateaus for a long time. One
way to deal with this is by resolution of singularities, which essentually
means finding a Riemannian manifold blowup π : N → M̃ , such that π is
bijective, smooth, and it is diffeomorphic everywhere except at the preim-
ages of singularities. In other words, it’s the bare minimum one must do to
smoothen M̃ .

Resolution of singularities has been extensively studied in algebraic geom-
etry, and the methods from algebraic geometry, such as Hironaka’s theorem,
have been applied to machine learning. For more information, refer to the
paper [Amari et al., 2018] or the standard reference book [Watanabe, 2009].
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