
Perfect diffusion is TC0 – Bad diffusion is Turing-complete

Yuxi Liu
Berkeley Artificial Intelligence Research Lab, UC Berkeley∗

(*yuxi_liu@berkeley.edu)
(Dated: 2025-04-18)

This paper explores the computational complexity of diffusion-based language modeling. We prove a di-
chotomy based on the quality of the score-matching network in a diffusion model. In one direction, a network
that exactly computes the score function of some initial distribution can only perform language modeling within
the TC0 complexity class, reflecting limitations tied to rapid convergence. In the other direction, we show that
if there is no requirement for the network to match any score function, then diffusion modeling can simulate any
Turing machine in a certain sense. This dichotomy provides a theoretical lens on the capabilities and limitations
of diffusion models, particularly concerning tasks requiring sequential computation. We conjecture extensions
of our theoretical results, including for the case where the diffusion model is not perfect, but merely good. We
also discuss the wider context and practical implications, and hypothesize that a machine learning architecture
that can interpolate between sequential and parallel modes of operation would be superior to both Transformers
and diffusion models.

I. INTRODUCTION

Diffusion modeling is a standard technique in genera-
tive modeling of probability distributions. First proposed in
2015 [SDWMG15], it has been considered state of the art
in generative modeling of images since 2021 [DN21]. Re-
searchers have recently extended these models beyond im-
ages to handle discrete states, including language model-
ing [AJH+21, GLF+22]. This expansion raises fundamen-
tal questions about the computational nature of diffusion pro-
cesses that our paper aims to address.

A diffusion model can be used to sample from a distribu-
tion with a variable amount of computing steps. This is usu-
ally understood as an advantage, in the sense of providing a
compute-precision tradeoff: With a few steps, one can sam-
ple from the distribution approximately, and with increasing
number of steps, the distribution can be sampled from with
increasing precision. However, this intuitive picture also sug-
gest that this advantage may be a curse. Specifically, it sug-
gests that after a few sampling steps, further computation is
“wasted” in the sense that they refine the result in a way that
does not matter, because the result has converged.

Indeed, empirically, diffusion models typically converge
rapidly with a fixed number of denoising steps regardless of
input. For example, Ravishankar et al. [RPRM24] studied
using diffusion models for depth-perception, and showed that
there is no difference between 5 and 100 sampling steps, Sim-
ilarly, Austin et al. [AJH+21] showed that the perplexity of
diffusion language modeling did not differ between 10 and
1024 diffusion steps.

While such rapid convergence may be regarded as an ad-
vantage, this also raises concerns about their fundamental ca-
pabilities. A key insight from language modeling research
is that autoregressive models benefit from “chain of thought”
approaches when tackling complex reasoning tasks. These
approaches allow models to work through problems step by

∗ https://yuxi-liu-wired.github.io/

step before arriving at a final answer, much like human rea-
soning. This benefit isn’t just observed in practice but has
theoretical foundations [FZG+23, LLZM24]. In the big pic-
ture, both theory and practice has shown that chain of thought
approaches benefit precisely in allowing a variable amount of
sequential processing, which is necessary for solving certain
kinds of “inherently sequential” problems.

As an example, if your program solve both easy and dif-
ficult Sudoku puzzles in exactly the same number of steps,
you might reasonably question whether your method actually
works for the hard puzzles. At one end of the limit, an easy
Sudoku puzzle could be solved in a few steps by filling in
each blank in parallel, since each blank could be solved by
checking its row, column, and square. There is no sequen-
tial dependence between the blanks. At the other end of the
limit, a hard Sudoku puzzle would involve a large amount of
dependence between many blanks, which would require deep
tree searches and significant backtracking to solve. It would
be unreasonable to expect a parallel algorithm to solve a hard
Sudoku puzzle, no matter the “width” of the parallelism, if it
does not have the requisite “depth”.

Indeed, certain kinds of empirical failures of diffusion lan-
guage models suggest that they struggle precisely on tasks that
require sequential processing. For instance, when using diffu-
sion models to solve Sudoku puzzles, Wewer et al. [WPSL25]
found that denoising all digits simultaneously worked for easy
puzzles but failed for difficult ones. Performance improved
only when denoising fewer digits at a time, with optimal re-
sults achieved by denoising just one digit at a time, essentially
reverting to a purely sequential process.

Similarly, Arriola et al. [ASG+25] observed that discrete
diffusion models underperform compared to autoregressive
approaches. The solution they proposed simply reintroduces
autoregressive generation, applying diffusion to generate a
few tokens at a time. This effectively recreates the autore-
gressive language modeling paradigm, with diffusion being
merely a stand-in replacement for the usual Transformer de-
coder.

These empirical observations suggest a deeper theoretical
question: Is there a fundamental computational limitation

ar
X

iv
:s

ub
m

it/
63

68
47

8
 [

cs
.C

C
]

 1
8

A
pr

 2
02

5

mailto:yuxi_liu@berkeley.edu
https://yuxi-liu-wired.github.io/

2

to diffusion models that prevents them from solving certain
problems efficiently? In this paper, we provide a theoretical
framework in which we can formalize and prove certain styl-
ized facts from these empirical findings. In one direction, we
prove that “perfect” diffusion models are constrained to the
TC0 complexity class due to their rapid convergence. In the
other direction, we explicitly construct “bad” ones to perform
any Turing-computable operation, precisely because they do
not converge. We make certain conjectures and extensions for
further work.

II. SETUP

Before we begin presenting the theorem and the construc-
tion, we set up the mathematical framework.

A. Diffusion modeling

Diffusion models work by gradually adding noise to data
and then learning to reverse this process. Think of it as watch-
ing a drop of ink spread through water, and then learning to
recover the original drop from the diluted state. This intuitive
physical analogy connects to their mathematical foundation,
which borrows concepts from thermodynamics and statistical
physics.

In machine learning literature, there are two main formu-
lations to describe this process. The first, Denoising Diffu-
sion Probabilistic Models (DDPM), approaches the prob-
lem through discrete time steps. The second, score-matching
with Langevin dynamics (SMLD), uses continuous differ-
ential equations. Despite their different origins, these two
approaches are fundamentally equivalent, as demonstrated by
[KSPH21] and [Luo22].

The connection works in both directions. DDPM can be
seen as a discretized version of SMLD, where each DDPM up-
date step corresponds to using the Euler–Maruyama method
to solve SMLD’s stochastic differential equation (SDE). Con-
versely, if we take the limit of infinitely many DDPM steps
with infinitesimally small noise additions, we recover the con-
tinuous SDE formulation of SMLD. This equivalence means
that models trained using either framework can be used inter-
changeably for sampling purposes.

For clarity and mathematical convenience, we primarily use
the SMLD formulation throughout this paper, though our re-
sults apply equally to both frameworks, since they are equiva-
lent.

Consider a data distribution ρdata over the real space Rd .
The task of SMLD is to learn a score-matching function fθ

that allows us to sample from ρdata.
A noise schedule is a continuous function β of type

[0,∞)→ [0,∞), such that β (t) can be interpreted as the nois-
ing rate in the forward diffusion process at time t. We require∫

∞

0 β (t)dt = ∞, which can be interpreted as saying that even-
tually all signal is destroyed, leaving only noise.

Define the distribution at t = 0 by ρ0 := ρdata. Suppose we
sample a data point x0 ∼ ρ0, and let it evolve according to the

SDE

dxt =−1
2

β (t)xtdt +
√

β (t)dWt (1)

then this implies a time-evolution of the data distribution over
time, which can be directly solved by the Fokker-Planck equa-
tion:

∂tρt =
1
2

β (t)(∇ · (xρt)+∆ρt) (2)

At the t → ∞ limit, the distribution converges to the stan-
dard normal distribution N (0, Id).

For any time T > 0, the time-evolution can be exactly re-
versed as follows. Let x̂T be sampled according to ρx̂,0 := ρT ,
then the following SDE equation would lead to an exact rever-
sal:

dx̂t =
1
2

β (T −t)x̂tdt+β (T −t)∇x̂t lnρT−t(x̂t)︸ ︷︷ ︸
score function

dt+
√

β (T − t)dWt

(3)
where by “reversal” we mean that ρx̂,t = ρT−t for any t ∈ [0,T]
[And82].

Assuming that a score-matching function fθ has been
trained, such that

fθ (x, t)≈ ∇x lnρt(x) (4)

for all t,x, then ρdata can be approximately sampled by ini-
tializing a pure-noise sample x̂T ∼ N (0, Id), then solving the
backward SDE

x̂t−dt =
1
2

β (t)x̂tdt +β (t) fθ (x̂t , t)dt +
√

β (t)dWt (5)

by any SDE integration method, such as Euler–Maruyama
method. By varying the sizes of the dt steps in the
Euler–Maruyama method, we can recover different noise-
schedules for DDPM.

If fθ (x, t) = ∇x lnρt(x) is exact, then at the limit of T → ∞

and infinitely many steps in the Euler–Maruyama method, we
can exactly sample from ρdata.

B. Circuit complexity

A circuit complexity class is a particular form of computa-
tional complexity class. In our paper, we focus on the TC0

class, which is particularly suited to studying the computa-
tional complexity of neural networks, because a family of
feedforward neural networks with a constant number of lay-
ers is essentially a TC0 circuit family. Indeed, the class of
TC0 were first proposed specifically in the 1980s to model the
computational complexity of neural networks. [PS88]

Formally, TC0 is defined as the class of problems that can
be decided by a family of boolean circuits with the following
properties:

• Boolean circuits: A boolean circuit is a directed
acyclic graph where each node (or gate) computes a
boolean function of its inputs. The inputs to the circuit
are boolean variables, and the output is a single boolean
value.

3

• Unbounded fan-in: Each gate in the circuit can re-
ceive inputs from an arbitrary number of other gates.
This contrasts with bounded fan-in circuits where gates
have a limited number of inputs. Convolutional neurons
have bounded fan-in, but fully-connected neurons have
unbounded fan-in.

• Polynomial width: The number of gates at each level
of the circuit is bounded by a polynomial in the input
size n.

• Constant depth: The longest path from any input to the
output is bounded by a constant that does not depend
on the input size. This may be interpreted as stating the
circuit family is “highly parallelizable”.

• Threshold gates: A threshold gate is a binary neuron.
It can be written as a function θ(∑i wixi+t), where wi, t
are real numbers, and θ is the binary step-function

For those unfamiliar, here is a short exercise: With 1 layer,
we can construct “gadgets” such as the AND gate, the NOT
gate, and all other common boolean gates with threshold
gates. With 2 layers, we can construct the k-EQUALS gate
for each k, which outputs 1 if exactly k inputs are 1, and 0
otherwise. With 3 layers, we can construct the IS-IN gate for
any finite subset of N.

From the definition, it is clear that each member TC0 cir-
cuit family is essentially a feedforward neural network. How-
ever, this only consists of a single member. Since the neural
network has a fixed number of inputs, it would be unable to
process more inputs than the number of neurons in its input.
This brings the idea of a circuit family. A circuit family is a
set of circuits C1,C2, . . . such that each Cn is capable of pro-
cessing exactly inputs of length n. Computational complexity
theory studies not the complexity of problems solvable by a
single circuit, but a circuit family, because any single circuit
is merely equivalent to a lookup table, and the complexity of
the problem it solves is trivial.

Consequently, a TC0 family of feedforward neural net-
works is defined as a set of neural networks Cn, such that
there exists a constant D (the upper bound on depth), and a
polynomial p, such that each Cn has depth ≤ D and number of
neurons ≤ p(n).

While the TC0 class is most similar to feedforward fully-
connected neural networks, this is not necessarily the case.
Indeed, a family of bounded-depth polynomial-width Trans-
formers is still in the TC0 class. [LLZM24]

C. Language modeling

At the most abstract level, a language is simply a set of
words made of letters. Formally:

• An alphabet Σ is a finite nonempty set. Each element
in the alphabet may be called a letter or a token.

• A word in an alphabet Σ is a finite sequence of elements
of Σ.

• A language L in an alphabet Σ is a set of words in the
alphabet Σ.

A prefix language modeling problem is, given a sequence
of tokens x1, . . . ,xn, to compute the next token xn+1. This is
a deterministic formalization of “next-token prediction”, the
dominant paradigm in language modeling since the GPT-2 of
2019.

An example would be the word problem for finite groups:
Given a finite group G, and a sequence of elements in the
group g1, . . . ,gn, compute ∏

n
i=1 gi. Intuitively, there is a

method that computes this in log2(n) parallel steps by binary
multiplication: the first parallel step computes g1g2,g3g4, . . . ,
and so on. Since log2(n) is not constant, this would not lie
within the TC0 class. For certain groups, there are shortcuts to
this process. For example, for any prime number p, the word
problem in the mod-p multiplicative group is computable in
constant number of parallel steps via Fermat’s little theorem.
However, shortcuts probably do not exist in general. Indeed,
if G is the permutation group on 5 elements, then the cor-
responding word problem is not in the TC0 class, assuming
widely believed conjectures in computational complexity the-
ory. [LAG+23]

While usually, a diffusion model is used for generating
from a continuous state space such as Rd , it can be used to
model discrete distributions as well. This is necessary for lan-
guage modeling. We consider the case closest to continuous
state space modeling – quantization: One divides the contin-
uous state space Rd into regions, and assigns a token to each
region. This then allows sampling a discrete distribution from
a diffusion model with continuous state space. Formally, if
Σ = {a1,a2, . . . ,aM} is the alphabet, then we divide Rd into
M regions V1, . . . ,VM , such that each region Vi maps to a token
ai.

Also, as usual in circuit complexity theory, we need more
than a single score-network fθ , but rather, a full sequence of
them, so we define a TC0 family of score-networks to be a
family of feed-forward neural networks fθ ,0, fθ ,1, . . . , such
that:

• Each fθ ,n takes as input n+ 2 elements x1, . . . ,xn,x, t,
and produces an output fθ ,n(x, t|x1, . . . ,xn).

• The family fθ ,n has O(1) depth and poly(n) width.

Comment. For the theorem to hold, it is not necessary to
assume the family of neural networks are feed-forward. The
theorem holds for any family of score-networks for which a
single forward pass is in TC0. This includes, for example,
Transformers and state-space models [MS23, MPS24].

Finally, since a diffusion model may solve a problem only
with high enough probability, instead of solving it determin-
istically, we make the following definition: A prefix lan-
guage modeling problem is solved with constant probabil-
ity bound if there exists some ε > 0, such that for each input
token sequence x1, . . . ,xn, let xcorrect be the correct response,
then

p(xcorrect |x1, . . . ,xn)> p(x′|x1, . . . ,xn)+ ε, ∀x′ ̸= xcorrect .
(6)

4

D. Counter machines

To show that a deliberately bad diffusion model may be
Turing-complete, we show how they could simulate a partic-
ular kind of Turing-complete abstract machines: the counter
machines. This is not necessary for understanding the theo-
rem on “perfect” diffusion models.

A counter machine can be thought of as finite-state au-
tomata augmented with memories, each of which can hold a
single unbounded integer. In our paper, we use the following
form of counter machine, lightly modified from [FMR68]:

• The machine has access to a finite number k of regis-
ters, notated as r1, . . . ,rk. Each register stores a single
integer.

• The machine also has access to a read-only input tape,
on which the machine has a read-head that can be
moved in either direction. At machine start-up, the in-
put tape has contents ^a1a2 . . .an$, where ^ and $ de-
note the beginning and the end of the word, and n is the
length of the input word. The read-head is placed at the
character just after ^, which may be $ if the input word
is empty.

• A program for the machine is a numbered list of in-
structions.

• Each instruction is of the following format: condi-
tional on the state of the read-head on the input tape and
on whether each register is zero or not, modify every
register by an amount in {−1,0,+1}, move the read-
head by up to one position in either direction, then jump
to another instruction.

• There is a special instruction named “HALT”. If the
machine arrives at such an instruction, it halts. Each
HALT instruction may be marked as either an accept-
ing HALT, or a rejecting HALT.

• To accept an input word means the machine reaches an
accepting HALT state. Similarly for rejection.

• A decider for a language is a machine that accepts
words in the language, and rejects words out of the lan-
guage. It must halt on all inputs.

It is known that counter machines are Turing-complete, in
the sense that a universal Turing machine can be simulated
by a counter machine with 2 registers [Min67]. This implies
in particular that any language that is decidable by a Turing
machine is decidable by a counter machine.

III. MAIN THEOREM

Theorem. Suppose there exists a TC0 family of score-
networks fθ ,0, fθ ,1, . . . , such that for each n and each
x1, . . . ,xn, the function fθ ,n(x, t|x1, . . . ,xn) exactly computes
the score function of some initial distribution ρ0,n with
bounded first moment: Ex0∼ρ0,n [∥x0∥]≤ 1.

If this family solves a prefix language modeling problem
at the limit of infinite time SMLD with constant probability
bound, then the problem is in the TC0 class.

Proof. The idea of the proof is simple. We first construct
a universal O(1)-bound on how many steps are sufficient for
sampling the SMLD within a constant probability bound, then
we derandomize it according to [HMP+93], while still re-
maining within the TC0 class.

Since the score-network exactly computes the score func-
tion for ρ0, the score-matching error is exactly zero.

By [LY24], there exists a constant c > 0 that does not de-
pend on any parameter in the statement of the theorem (a “uni-
versal constant”), such that there exists a noise schedule for
DDPM that takes T steps of the following kind. Using the
schedule and the score-matching function fθ , we sample from
a distribution ρDDPM,T . It satisfies the inequality

TV (ρDDPM,T ,ρx̂,0)≤ c
d(logT)3

T
(7)

Now, since c is a universal constant, we can take T to be
cc′d2, to obtain an upper bound

TV (ρDDPM,T ,ρx̂,0)≤
(log(cc′d2))3

c′d
(8)

The key is that T does not increase with n.
Since the growth of log3 is dominated by linear growth, for

any ε ′ > 0, there exists a large enough universal constant c′,
such that

TV (ρDDPM,T ,ρx̂,0)≤ ε
′ (9)

for all d = 1,2,3,
Let ε be the constant probability bound, then setting ε ′ =

ε/2, we find that ρDDPM,T already solves the problem with
constant probability bound.

Now we can derandomize this family, obtaining a TC0 fam-
ily of boolean circuits that solves the problem deterministi-
cally. The details of the derandomization method appears in
[HMP+93, Proposition 4.2]. The big picture is as follows: we
remove the probability by hard-coding a magic constant (also
known as a “non-uniform advice string”) per member of the
family, such that sampling for polynomially many times, and
taking the majority output, would always give the correct out-
put. By Hoeffding’s inequality, such magic constants exists
for a large enough polynomial. ■

Comment. The requirement for exact score-matching is
necessary for the following two reasons:

First, the full form of the inequality from [LY24] is

TV (ρDDPM,T ,ρx̂,0)≤ c
d(logT)3

T
+ cεscore

√
logT . (10)

where the term εscore denotes the score-matching error be-
tween the true score function of ρx̂,0 and the approximation
fθ . As this extra term increases with T , the proof above does
not apply.

Second, if we have no requirement on score-matching, then
there is essentially no constraint on the computational power
of SMLD, by the following construction.

5

Practically relevant score-networks are intermediate be-
tween two extreme cases. We believe that if fθ is a good
enough, but not perfect, score-matching network, then a gen-
eralized version of the above theorem still applies. However,
finding the right way to quantify the goodness, as well as prov-
ing such a generalization, is left as future work.

IV. TURING-COMPUTABILITY CONSTRUCTION

As previously stated, the counter machine formalism is an
alternative formalism for computability, equivalent to the Tur-
ing machine formalism. Given a counter machine with k reg-
isters, we describe how to construct a “pinball” machine that
operates according to the SDE

dx̂t =
1
2

x̂tdt + fθ (x̂t , t)dt +dWt (11)

under a smooth force field fθ , thus showing Turing-
completeness.

The pinball machine has a single ball, whose location is x̂t .
The ball moves around a state space Rd guided by the force
field fθ (x̂t , t). Indeed, the force field can be time-independent,
so we write it as fθ (x̂t) instead.

We divide the state space Rd into three parts as Rd = Rk ×
R×R. The first part Rk represents the registers. The second
part R represents the program counter, which tracks the line-
number of the program. The third part R is used for jumping
between instructions, providing enough room for maneuver
without “crossing the wires”.

The space is divided into cubic cells of side lengths L. We
denote each cell by k+2 integers.

Corresponding to the tripartite structure of the state space,
the force field has three parts as well. One part simply cancels
out the 1

2 xt term. Another part behaves like grooves, along
which the ball rolls, thus implementing the counter machine.
The third part points towards the center-lines of the grooves,
so that the ball is not knocked off the grooves by the noise
term dWt .

Instead of formally specifying the grooves, it is simpler to
give an example. Suppose at line number 32, the instruction
reads “If the current state of register 1 is zero, then increment
register 2 and jump to line 23, else jump to line 33”, then this
is implemented by drawing the following paths:

• (0,r2, . . . ,rd ,32,0) → (0,r2 + 1, . . . ,rd ,32,32) →
(0,r2 +1, . . . ,rd ,23,32)→ (0,r2 +1, . . . ,rd ,23,0).

• (r1,r2, . . . ,rd ,32,0) → (0,r2, . . . ,rd ,32,32) →
(0,r2, . . . ,rd ,33,32) → (0,r2, . . . ,rd ,33,0) for nonzero
r1.

By smoothing the corners of the paths, we obtain a smooth
force field. ■

Comment. We can more carefully handle the problem of
leakage: The noise term dWt would, over a long enough time,
eventually knock the ball off the grooves. This can be sup-
pressed by either using a strong confinement force field, or by
using a weak confinement force field but a large cubic cell side

length L. Specifically, we show how to obtain a confinement
force field with Lipschitz-continuity coefficient bounded by a
universal constant.

Let the counter machine have N instructions. Suppose it
halts within S steps, then the total distance travelled by the
pinball would be O(NSL), where we need to account for the
time necessary to jump between instructions. Then, since the
rate of leakage is on the order of e−L2

, we need only require
L ≥ O(

√
ln(NSL)) to suppress the probability of leakage dur-

ing the entire computation to a small constant. In particular,
for any fixed N,S, because L grows faster than

√
ln(NSL),

there exists a big enough L for which the machine will halt
without leakage, for probability as close to 1 as one desires.
This machine operates under a force field that is smooth, and
has Lipschitz-continuity bounded by universal constant.

Suppose that we have a language that is decidable by a Tur-
ing machine when it is restricted to a working tape with length
O(f (n)), where n is the input length, and f is some monotoni-
cally increasing function, then by [FMR68, Theorems 3.1 and
3.2], it is decidable by a counter machine that takes eO(f (n))

steps to halt. Thus, it suffices when L ≥ O(
√

f (n)).

V. FUTURE WORK

A. Theoretical extensions

We have shown that perfect diffusion models with exact
score matching are constrained to TC0, while deliberately
“bad” diffusion models can be Turing-complete. The more
realistic intermediate case remains open, where the score net-
work approximately computes the score function.

We conjecture that similar computational limitations ap-
ply when the approximation quality is sufficiently high, but
formalizing this notion of “sufficiently good approximation”
and proving the corresponding result requires further work.
We make this conjecture based on two reasons. One, the
aforementioned empirical observation that diffusion models
converge rapidly. Two, because the forward diffusion con-
verges exponentially rapidly to the standard normal distribu-
tion N (0, I), we believe that the backward diffusion process,
as long as it is sufficiently close to the score function of a for-
ward diffusion process, would be forced to converge in O(1)
time, since exponential decay is fast decay.

Our analysis focuses on diffusion models operating on Rd

with subsequent discretization. However, other formulations
of discrete diffusion exist, such as the directly discrete ap-
proach in [AJH+21]. For these models, we conjecture that
TC0 limitations apply regardless of score network quality, as
the finite state space inherently constrains the “computational
capacity” of the diffusion process. Intuitively, a finite state
space allows encoding only a finite number of bits per state
before the signal-to-noise ratio1 is exhausted, and the reverse
diffusion reaches t = 0.

1 See [KSPH21] for a formalization of signal-to-noise in diffusion modeling.

6

Between finite state spaces and Rd lies the intermediate
case of continuous but compact state spaces, such as the unit
ball in Rd . While our “pinball machine” construction would
still work in such spaces, it would require dividing the com-
pact space into an increasing number of cells. This means the
force field, while smooth, cannot maintain bounded Lipschitz-
continuity coefficients. Because of this, we hypothesize that
under the additional requirement of O(1) Lipschitz-continuity,
diffusion models on compact spaces would be constrained to
TC0 regardless of score network quality, effectively making
them computationally equivalent to finite state models.2

B. Empirical validation

The animating big-picture idea behind this paper is that
certain tasks are inherently sequential, such that any parallel
computation that takes too little sequential steps must neces-
sarily err. Sequential processing and consequences of its lack
has been systematically studied for Transformers under the
name of “chain of thought”, but not for diffusion models. We
have collected a few suggestive examples gleaned from the
literature, but it would be a valuable contribution to the litera-
ture to test this hypothesis systematically on diffusion models.
We conjecture:

• Tasks requiring deep sequential reasoning should ex-
hibit a sharp performance cliff when addressed by dif-
fusion models with a fixed number of denoising steps.

• Adding more denoising steps beyond a certain thresh-
old should yield minimal improvements for TC0 tasks
but continued improvements for tasks outside this com-
plexity class.

• Performance on complex sequential tasks should im-
prove significantly when introducing autoregressive
components, as seen in [ASG+25].

Controlled experiments testing these predictions would
provide valuable empirical validation of our theoretical frame-
work and guidance for the further development of diffusion
models.

C. Architecture

Some architectures are inherently more sequential than oth-
ers. Recurrent neural networks, for instance, process inputs
step by step. They were state of the art in language model-
ing, before being largely replaced by Transformers because of
the latter’s massive parallelism, but sequential processing has
made a comeback through chain-of-thought approaches when
sequential reasoning proved necessary for complex tasks.

A similar pattern emerged in the recent history of image
generation. The OpenAI DALL-E system used a standard

Transformer architecture to generate images patch-by-patch.
Diffusion models then took over with their fully parallel gen-
eration across all pixels. If our thesis about computational
constraints holds, we might expect a return to some form of
sequential inference for advanced image generation tasks.

The most promising direction may be architectures that in-
terpolates sequential and parallel computation dynamically,
shifting to the sequential mode for tasks that demand them.
We point out several particularly worthy directions for inter-
polation:

• In architecture, interpolation between massively paral-
lel models (Transformers, state-space models) and se-
quential ones (recurrent neural networks).

• For language generation, interpolation between full-
sequence generation (typical of diffusion language
models) and autoregressive generation (common in
Transformer-based models). While both approaches
have been studied extensively in isolation, their com-
bination remains relatively unexplored.

• Interpolation between SMLD and neural ODE frame-
works. SMLD offers rapid convergence through mas-
sive parallelism, while neural ODEs provide slower
convergence with more sequential computation.

VI. CONCLUSION

This paper established a fundamental dichotomy in the
computational capabilities of diffusion models for language
modeling. We proved that “perfect” diffusion models, charac-
terized by exact score matching to some initial distribution,
are inherently limited. Their rapid convergence constrains
their computational power to the TC0 complexity class. This
theoretical limit aligns with empirical observations suggesting
that standard diffusion models struggle with tasks demanding
deep sequential reasoning, converging quickly regardless of
problem complexity.

Conversely, we demonstrated that this limitation is not ab-
solute for all diffusion-like processes. By constructing a “bad”
diffusion model with a specifically designed, non-convergent
score function, we showed that such systems can achieve
Turing-completeness, capable of simulating arbitrary sequen-
tial computation via a pinball machine analogy.

These findings highlight a potential trade-off inherent in the
diffusion framework: the efficiency gained through rapid, par-
allel denoising may come at the cost of computational depth
required for inherently sequential tasks. While the precise
complexity of realistic models with approximate score match-
ing remains an open question, our results provide a theoret-
ical grounding for understanding the observed strengths and
weaknesses of diffusion models, suggesting that incorporating
mechanisms for controlled sequential processing, as explored
in some recent works, may be crucial for extending their ca-
pabilities to more complex reasoning domains.

7

[AJH+21] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne Van Den Berg. Structured denoising dif-
fusion models in discrete state-spaces. Advances in neural in-
formation processing systems, 34:17981–17993, 2021.

[And82] Brian DO Anderson. Reverse-time diffusion equation mod-
els. Stochastic Processes and their Applications, 12(3):313–
326, 1982.

[ASG+25] Marianne Arriola, Subham Sekhar Sahoo, Aaron
Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Justin T Chiu,
and Volodymyr Kuleshov. Block diffusion: Interpolating be-
tween autoregressive and diffusion language models. In The
Thirteenth International Conference on Learning Representa-
tions, 2025.

[DN21] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

[FMR68] Patrick C Fischer, Albert R Meyer, and Arnold L Rosen-
berg. Counter machines and counter languages. Mathematical
systems theory, 2(3):265–283, 1968.

[FZG+23] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,
Di He, and Liwei Wang. Towards revealing the mystery behind
chain of thought: a theoretical perspective. Advances in Neural
Information Processing Systems, 36:70757–70798, 2023.

[GLF+22] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong
Wu, and LingPeng Kong. Diffuseq: Sequence to se-
quence text generation with diffusion models. arXiv preprint
arXiv:2210.08933, 2022.

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario
Szegedy, and György Turán. Threshold circuits of bounded
depth. Journal of Computer and System Sciences, 46(2):129–
154, 1993.

[KSPH21] Diederik Kingma, Tim Salimans, Ben Poole, and
Jonathan Ho. Variational diffusion models. Advances in neural
information processing systems, 34:21696–21707, 2021.

[LAG+23] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. Transformers learn shortcuts to
automata. In The Eleventh International Conference on Learn-
ing Representations, 2023.

[LLZM24] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
Chain of thought empowers transformers to solve inherently se-
rial problems. arXiv preprint arXiv:2402.12875, 2024.

[Luo22] Calvin Luo. Understanding diffusion models: A unified
perspective. arXiv preprint arXiv:2208.11970, 2022.

[LY24] Gen Li and Yuling Yan. O (d/t) convergence theory for dif-
fusion probabilistic models under minimal assumptions. arXiv
preprint arXiv:2409.18959, 2024.

[Min67] Marvin Minsky. Computation: Finite and Infinite Ma-
chines. Prentice-Hall, 1967.

[MPS24] William Merrill, Jackson Petty, and Ashish Sabharwal.
The illusion of state in state-space models. arXiv preprint
arXiv:2404.08819, 2024.

[MS23] William Merrill and Ashish Sabharwal. The parallelism
tradeoff: Limitations of log-precision transformers. Transac-
tions of the Association for Computational Linguistics, 11:531–
545, 2023.

[PS88] Ian Parberry and Georg Schnitger. Parallel computation with
threshold functions. Journal of Computer and System Sciences,
36(3):278–302, 1988.

[RPRM24] Rahul Ravishankar, Zeeshan Patel, Jathushan Ra-
jasegaran, and Jitendra Malik. Scaling properties of diffusion
models for perceptual tasks. arXiv preprint arXiv:2411.08034,
2024.

[SDWMG15] Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International con-
ference on machine learning, pages 2256–2265. pmlr, 2015.

[WPSL25] Christopher Wewer, Bart Pogodzinski, Bernt Schiele,
and Jan Eric Lenssen. Spatial reasoning with denoising models.
arXiv preprint arXiv:2502.21075, 2025.

2 A reviewer stated that the paper should end here. We somewhat agree, but
the academic style requires the paper to continue. Feel free to stop reading

here.

	Perfect diffusion is TC0̂ – Bad diffusion is Turing-complete
	Abstract
	Introduction
	Setup
	Diffusion modeling
	Circuit complexity
	Language modeling
	Counter machines

	Main theorem
	Turing-computability construction
	Future work
	Theoretical extensions
	Empirical validation
	Architecture

	Conclusion
	References

